需求人群:
["开发者:可利用其代理编码功能,通过Antigravity IDE或JetBrains集成减轻终端、编辑器和浏览器任务负担,还能设置思维水平平衡性能。", "科研人员:1M token的长上下文处理能力可处理大量研究语料,博士级推理能力有助于复杂研究分析。", "企业办公人员:在Docs、Gmail和Sheets中使用,可进行起草、总结和数据推理,提高工作效率。", "普通用户:在Google搜索中使用AI模式,获得动态视图和视觉布局响应,提升搜索体验。"]
使用场景示例:
开发者使用Gemini 3 Pro生成产品路线图和React原型。
科研人员利用其处理研究论文和视频转录进行深度分析。
企业办公人员在文档中使用Gemini 3 Pro进行起草和总结。
产品特色:
博士级推理能力:在复杂考试中展现博士级别的推理水平,运用动态思维最大化内部审议,还有深度思考模式应对超难问题。
长上下文处理:能够处理高达100万个输入token,让团队可以一次性处理书籍、研究语料、视频转录和完整产品规格等内容。
多模态深度理解:原生理解文本、图像、视频、音频和PDF,在视觉基准测试中取得了领先的成绩。
智能编码:通过增强的“氛围编码”和Gemini Agent自动化,能够生成原型、迁移遗留代码并操作终端,相比Gemini 2 5 Pro有50%的准确率提升。
可配置思维水平:开发者可以设置思维水平,平衡延迟和推理深度,默认高思维水平用于复杂任务,低水平加速简单调用。
动态界面:在Google搜索AI模式下,返回的视觉布局和动态视图就像交互式迷你网页应用,可用于计算器或规划器等任务。
安全与对齐:改进了对提示注入和禁止内容的防御,减少了附和现象,在生产工作流中提供更可靠的答案。
自适应分辨率:通过媒体分辨率参数为图像、PDF和视频帧选择低、中、高分辨率,平衡质量和token成本。
使用教程:
1. 在Gemini App,订阅Google AI Plus Pro Ultra,选Gemini 3 Pro思维模式,运行含图像或PDF的多模态提示。
2. 开启Google搜索AI模式(美国先支持),选AI Pro Ultra,启用“思维”,请求动态视图或视觉布局响应。
3. 使用Gemini API或Vertex AI进行编程访问,支持函数调用、JSON输出和多模态负载。
4. 借助Antigravity IDE或JetBrains集成进行代理编码。
5. 在Docs、Gmail和Sheets中选择Gemini 3 Pro进行起草、总结和数据推理。
6. Ultra或API用户用Gemini CLI脚本构建、测试和数据准备。
浏览量:1
字节跳动自研大模型,提供多模态能力
豆包大模型是字节跳动推出的自研大模型,通过内部50+业务场景实践验证,每日万亿级tokens大使用量持续打磨,提供多模态能力,以优质模型效果为企业打造丰富的业务体验。产品家族包括多种模型,如通用模型、视频生成、文生图、图生图、同声传译等,满足不同业务需求。
一款支持多模态功能的全功能大语言模型安卓应用。
MNN 大模型 Android App 是阿里巴巴开发的一款基于大语言模型(LLM)的安卓应用。它支持多种模态输入和输出,包括文本生成、图像识别、音频转录等。该应用通过优化推理性能,确保在移动设备上高效运行,同时保护用户数据隐私,所有处理均在本地完成。它支持多种领先的模型提供商,如 Qwen、Gemma、Llama 等,适用于多种场景。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
多模态大语言模型,提升多模态推理能力
InternVL2-8B-MPO是一个多模态大语言模型(MLLM),通过引入混合偏好优化(MPO)过程,增强了模型的多模态推理能力。该模型在数据方面设计了自动化的偏好数据构建管线,并构建了MMPR这一大规模多模态推理偏好数据集。在模型方面,InternVL2-8B-MPO基于InternVL2-8B初始化,并使用MMPR数据集进行微调,展现出更强的多模态推理能力,且幻觉现象更少。该模型在MathVista上取得了67.0%的准确率,超越InternVL2-8B 8.7个点,且表现接近于大10倍的InternVL2-76B。
文档理解的模块化多模态大语言模型
mPLUG-DocOwl 是一款用于文档理解的模块化多模态大语言模型,能够处理 OCR-free 文档理解任务。该模型具有出色的性能表现,支持文档视觉问答、信息问答、图表问答等多种任务。用户可以通过模型提供的在线演示来体验其强大功能。
大模型重塑千行百业
盘古大模型是华为云推出的人工智能解决方案,通过 NLP 大模型、CV 大模型、多模态大模型、预测大模型和科学计算大模型等多个模型,实现对话问答、图像识别、多模态处理、预测分析和科学计算等多种功能。盘古大模型具有高效适配、高效标注和准确可控的特点,可广泛应用于各行各业。详情请访问官方网址。
Google DeepMind旗舰多模态AI,1M上下文,具备博士级推理与高级编码能力
Gemini 3 Pro是Google DeepMind基于Transformer架构构建的多模态基础模型。其重要性在于为各领域提供强大的AI支持,能处理多种类型的输入和输出。主要优点包括博士级推理能力、100万输入token的长上下文处理、多模态深度理解、智能编码和动态思维等。产品背景是Google为满足复杂任务需求而研发。价格方面,API输入2美元/100万token,输出12美元/100万token(≤200k token多模态价格不同),Google AI Plus月费19.99美元可获得应用和Workspace试用机会。定位是用于代理任务和“氛围编码”等复杂智能任务的高端模型。
几行代码接入大模型
智谱AI大模型开放平台是一个提供多种AI模型服务的平台,支持开发者和企业快速接入大模型API,构建变革性AI体验。平台提供GLM-4系列大模型,包括免费模型GLM-4-Flash、全自研最新版本GLM-4-Plus、支持200万上下文的GLM-4-Long等。此外,还提供多模态大模型,如视觉能力GLM-4V-Plus、文生图CogView-3-Plus、文生视频CogVideoX。平台面向开发者提供模型API、Alltools API、批处理API等服务,面向企业服务提供医疗健康、汽车、游戏娱乐、文旅、智能终端、智能制造、消费等行业解决方案。
VITA-1.5: 实时视觉和语音交互的GPT-4o级多模态大语言模型
VITA-1.5 是一款开源的多模态大语言模型,旨在实现接近实时的视觉和语音交互。它通过显著降低交互延迟和提升多模态性能,为用户提供更流畅的交互体验。该模型支持英语和中文,适用于多种应用场景,如图像识别、语音识别和自然语言处理等。其主要优点包括高效的语音处理能力和强大的多模态理解能力。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
多模态语言模型预测网络
Honeybee是一个适用于多模态语言模型的局部性增强预测器。它能够提高多模态语言模型在不同下游任务上的性能,如自然语言推理、视觉问答等。Honeybee的优势在于引入了局部性感知机制,可以更好地建模输入样本之间的依赖关系,从而增强多模态语言模型的推理和问答能力。
智能编码助手,提升开发效率
通义灵码是一款专为开发者设计的智能编码助手,支持多种开发环境,包括JetBrains IDEs、Visual Studio Code、Visual Studio等。它通过集成先进的AI技术,帮助开发者快速完成编码任务,提高编码效率和质量,适用于各种编程语言和开发场景。
基于多模态大语言模型的可解释图像检测与定位
FakeShield是一个多模态框架,旨在解决图像检测和定位(IFDL)领域中的两个主要挑战:检测原理的黑箱性和在不同篡改方法间的有限泛化能力。FakeShield通过利用GPT-4o增强现有的IFDL数据集,创建了多模态篡改描述数据集(MMTD-Set),用于训练FakeShield的篡改分析能力。该框架包括领域标签引导的可解释检测模块(DTE-FDM)和定位模块(MFLM),能够处理各种类型的篡改检测解释,并实现由详细文本描述引导的定位。FakeShield在检测准确性和F1分数上优于其他方法,提供了一个可解释且优越的解决方案。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
一款强大的多模态小语言模型
Imp项目旨在提供一系列强大的多模态小语言模型(MSLMs)。我们的imp-v1-3b是一个拥有30亿参数的强大MSLM,它建立在一个小而强大的SLM Phi-2(27亿)和一个强大的视觉编码器SigLIP(4亿)之上,并在LLaVA-v1.5训练集上进行了训练。Imp-v1-3b在各种多模态基准测试中明显优于类似模型规模的对手,甚至在各种多模态基准测试中表现略优于强大的LLaVA-7B模型。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
面向生成场景的可控大语言模型
孟子生成式大模型(孟子 GPT)是一个面向生成场景的可控大语言模型,能够通过多轮的方式帮助用户完成特定场景中的多种工作任务。它支持知识问答、多语言翻译、通用写作和金融场景任务等功能,具有更可控、更灵活、更个性、更专业的优势。具体定价和使用方式请咨询官方网站。
Kat Dev是专为软件工程和编码任务打造的大语言模型,助力AI编码。
Kat Dev是快手Kwaipilot团队开发的AI代码智能解决方案,是专注于软件工程和编码任务的大语言模型家族。其重要性在于为开发者提供强大的代码生成、优化等能力,提升开发效率。主要优点包括高性能,如KAT Dev 72B Exp在SWE Bench基准测试中达到74.6分排名第一;采用先进的多阶段代理训练;支持多语言代码;模型开源,采用Apache 2.0许可证,方便社区使用和研究,开发者可免费访问。该产品定位为服务现代开发者和团队,推动AI驱动的软件开发。
多功能智能大模型
讯飞星火认知大模型是科大讯飞推出的新一代认知智能大模型,拥有跨领域的知识和语言理解能力,能够基于自然对话方式理解与执行任务。它具有语言理解、知识问答、逻辑推理、数学题解答、代码理解与编写等多种能力。该产品定位于为用户提供全面的语言理解与执行任务的解决方案。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
汇总和比较全球主要AI模型提供商的价格信息
AIGCRank大语言模型API价格对比是一个专门汇总和比较全球主要AI模型提供商的价格信息的工具。它为用户提供最新的大语言模型(LLM)的价格数据,包括一些免费的AI大模型API。通过这个平台,用户可以轻松查找和比较OpenAI、Claude、Mixtral、Kimi、星火大模型、通义千问、文心一语、Llama 3、GPT-4、AWS和Google等国内外主要API提供商的最新价格,确保找到最适合自己项目的模型定价。
提供全面的人工智能大模型产业信息和创新价值研究。
大模型之家是一个专注于人工智能大模型产业的平台,提供行业报告、技术创新动态、专家评测和奖项荣誉等信息。它通过整合行业资源,推动人工智能技术的创新和应用,帮助企业和个人更好地理解和利用大模型技术。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
国产化大模型,支持多模态,快速低成本智能化转型。
岩芯数智是一家专注于人工智能领域的公司,提供多种智能模型服务,包括Yan模型和Dolphin模型。Yan模型是国产化的大模型,支持多模态,承诺为用户提供训练周期短、数据集需求小、性价比更高的服务,帮助各产业链快速、低成本向智能化转型。Dolphin模型则提供智能对话、文章生成、文案摘要等功能,支持私域模型微调,以满足不同行业的需求。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
© 2025 AIbase 备案号:闽ICP备08105208号-14