需求人群:
"Gemini 2.0 适合需要高效处理复杂文本生成、代码生成和多模态交互的开发者和企业。它能够帮助开发者快速构建高性能的应用程序,同时降低开发成本,提高生产效率。"
使用场景示例:
开发者可以利用 Gemini 2.0 Flash 构建聊天机器人,提供高效、准确的对话体验。
企业可以使用 Gemini 2.0 Pro 生成高质量的代码片段,提高开发效率。
通过 Google AI Studio,用户可以快速部署 Gemini 2.0 模型,用于内容创作和数据分析。
产品特色:
支持文本、图像和音频输出,提供多模态交互能力
具备 100 万 token 的上下文窗口,适合处理复杂任务
提供简化的价格策略,降低开发成本
支持大规模文本生成,适用于多种应用场景
提供实验性的 Flash Thinking 功能,支持推理后再回答
使用教程:
1. 访问 Google AI Studio 或 Vertex AI 控制台,创建项目并选择 Gemini 2.0 模型。
2. 根据需求选择 Flash、Flash-Lite 或 Pro 版本,配置模型参数。
3. 使用 API 调用模型,输入提示文本或数据。
4. 接收模型生成的输出结果,如文本、代码或推理结果。
5. 将生成的结果集成到应用程序中,进行进一步的开发和优化。
浏览量:43
最新流量情况
月访问量
1836.03k
平均访问时长
00:00:33
每次访问页数
1.51
跳出率
73.42%
流量来源
直接访问
38.84%
自然搜索
48.66%
邮件
0.07%
外链引荐
9.03%
社交媒体
3.13%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
英国
4.17%
印度
8.70%
韩国
4.35%
美国
22.28%
越南
6.52%
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
多模态文本到图像生成模型
EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。
基于多模态的 AI 模型,无缝进行图像、视频、音频和代码的推理
Google Gemini 是一款基于多模态的 AI 模型,能够无缝进行图像、视频、音频和代码的推理。Gemini 是 DeepMind 推出的最先进的 AI 模型,能够在 MMLU(大规模多任务语言理解)等各项测试中超越人类专家。Gemini 具有出色的推理能力,在各种多模态任务中取得了最先进的性能。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
AI多模态数据绑定
ImageBind是一种新的AI模型,能够同时绑定六种感官模态的数据,无需显式监督。通过识别这些模态之间的关系(图像和视频、音频、文本、深度、热成像和惯性测量单元(IMUs)),这一突破有助于推动AI发展,使机器能够更好地分析多种不同形式的信息。探索演示以了解ImageBind在图像、音频和文本模态上的能力。
小型多模态模型,支持图像和文本生成
Fuyu-8B是由Adept AI训练的多模态文本和图像转换模型。它具有简化的架构和训练过程,易于理解、扩展和部署。它专为数字代理设计,可以支持任意图像分辨率,回答关于图表和图形的问题,回答基于UI的问题,并对屏幕图像进行细粒度定位。它的响应速度很快,可以在100毫秒内处理大型图像。尽管针对我们的用例进行了优化,但它在标准图像理解基准测试中表现良好,如视觉问答和自然图像字幕。请注意,我们发布的模型是一个基础模型,我们希望您根据具体的用例进行微调,例如冗长的字幕或多模态聊天。在我们的经验中,该模型对于少样本学习和各种用例的微调都表现良好。
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
Gemini 2.0 是谷歌推出的最新一代生成式 AI 模型,包含 Flash、Flash-Lite 和 Pro 版本。
Gemini 2.0 是谷歌在生成式 AI 领域的重要进展,代表了最新的人工智能技术。它通过强大的语言生成能力,为开发者提供高效、灵活的解决方案,适用于多种复杂场景。Gemini 2.0 的主要优点包括高性能、低延迟和简化的定价策略,旨在降低开发成本并提高生产效率。该模型通过 Google AI Studio 和 Vertex AI 提供,支持多种模态输入,具备广泛的应用前景。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
多模态驱动的定制视频生成架构。
HunyuanCustom 是一个多模态定制视频生成框架,旨在根据用户定义的条件生成特定主题的视频。该技术在身份一致性和多种输入模式的支持上表现出色,能够处理文本、图像、音频和视频输入,适合虚拟人广告、视频编辑等多种应用场景。
使用生成式AI赋能人类创造力与生产力
HiDream.ai是一个使用生成式AI来提升人类创造力和生产力的平台。它提供了像Pixeling这样的产品,可以自动生成图像、视频、文字等创意内容,帮助用户提高工作效率,创造更多价值。平台采用自主研发的多模态基础模型,可以处理文本、图像、音频等不同形式的数据,实现多模态的生成。平台面向创意工作者、企事业单位等用户,提供基于订阅的服务模式。用户可以通过WEB页面访问该平台,体验其强大的生成能力。
强大的多模态LLM,商业解决方案
Reka Core是一个GPT-4级别的多模态大型语言模型(LLM),具备图像、视频和音频的强大上下文理解能力。它是目前市场上仅有的两个商用综合多模态解决方案之一。Core在多模态理解、推理能力、编码和Agent工作流程、多语言支持以及部署灵活性方面表现出色。
多模态头像生成和动画
MagicAvatar是一个多模态框架,能够将各种输入模式(文本、视频和音频)转换为运动信号,从而生成/动画化头像。它可以通过简单的文本提示创建头像,也可以根据给定的源视频创建遵循给定运动的头像。此外,它还可以动画化特定主题的头像。MagicAvatar的优势在于它能够将多种输入模式结合起来,生成高质量的头像和动画。
多模态综合理解与创作
DreamLLM是一个学习框架,首次实现了多模态大型语言模型(LLM)在多模态理解和创作之间的协同效应。它通过直接在原始多模态空间中进行采样,生成语言和图像的后验模型。这种方法避免了像CLIP这样的外部特征提取器所固有的限制和信息损失,从而获得了更全面的多模态理解。DreamLLM还通过建模文本和图像内容以及无结构布局的原始交叉文档,有效地学习了所有条件、边缘和联合多模态分布。因此,DreamLLM是第一个能够生成自由形式交叉内容的MLLM。全面的实验证明了DreamLLM作为零样本多模态通才的卓越性能,充分利用了增强的学习协同效应。
多模态自回归模型,擅长文本生成图像
Lumina-mGPT是一个多模态自回归模型家族,能够执行各种视觉和语言任务,特别是在从文本描述生成灵活的逼真图像方面表现突出。该模型基于xllmx模块实现,支持以LLM为中心的多模态任务,适用于深度探索和快速熟悉模型能力。
新一代生成式AI模型
Liquid Foundation Models (LFMs) 是一系列新型的生成式AI模型,它们在各种规模上都达到了最先进的性能,同时保持了更小的内存占用和更高效的推理效率。LFMs 利用动态系统理论、信号处理和数值线性代数的计算单元,可以处理包括视频、音频、文本、时间序列和信号在内的任何类型的序列数据。这些模型是通用的AI模型,旨在处理大规模的序列多模态数据,实现高级推理,并做出可靠的决策。
智能编程助手,助力高效编程。
JoyCoder 是京东自主研发的智能编程助手,基于大语言模型,适配多种 IDE,提供代码预测、智能问答等功能。它能够提升开发人员的编程效率和代码质量,减少编程错误,降低修复问题的频率。该产品适合各种开发者使用,特别是在快速开发和测试需求中。随着智能编程的兴起,JoyCoder 为开发者提供了一个高效、流畅的编程环境,满足其多样化需求。产品定价方面,具体信息请联系售前顾问。
统一的多模态生成模型
Unified-IO 2是一个统一的多模态生成模型,能够理解和生成图像、文本、音频和动作。它使用单个编码器-解码器Transformer模型,将不同模式(图像、文本、音频、动作等)的输入和输出都表示为一个共享的语义空间进行处理。该模型从头开始在大规模的多模态预训练语料上进行训练,使用了多模态的去噪目标进行优化。为了学会广泛的技能,该模型还在120个现有数据集上进行微调,这些数据集包含提示和数据增强。Unified-IO 2在GRIT基准测试中达到了最先进的性能,在30多个基准测试中都取得了强劲的结果,包括图像生成和理解、文本理解、视频和音频理解以及机器人操作。
AI Mode 是谷歌搜索中的一项实验性生成式 AI 功能,可帮助用户解决复杂问题。
AI Mode 是谷歌搜索中的一项实验性功能,基于 Gemini 2.0 模型开发。它通过高级推理和多模态能力,为用户提供更深入、更全面的搜索结果。该功能旨在帮助用户更高效地处理复杂的多部分问题,并通过实时数据和知识图谱提供高质量的响应。AI Mode 的推出体现了谷歌在提升搜索体验方面的持续创新,同时也展示了生成式 AI 在信息检索中的应用潜力。
AlloyDB AI助力PostgreSQL构建生成式AI应用
AlloyDB AI是Google Cloud推出的一项数据库服务,可帮助开发者在PostgreSQL数据库上构建生成式AI应用。它提供了熟悉的PostgreSQL接口,支持向量、模型管理,并可深度集成Google Vertex AI,轻松访问各种生成式AI模型。AlloyDB AI拥有企业级的可扩展性、可用性与安全性,可实现超高性能的向量运算,是构建PostgreSQL生成式AI应用的理想选择。
多模态引导的共语言面部动画生成
Media2Face是一款通过音频、文本和图像多模态引导的共语言面部动画生成工具。它首先利用通用神经参数化面部资产(GNPFA)将面部几何和图像映射到高度通用的表情潜在空间,然后从大量视频中提取高质量的表情和准确的头部姿态,构建了M2F-D数据集。最后,采用GNPFA潜在空间中的扩散模型进行共语言面部动画生成。该工具不仅在面部动画合成方面具有高保真度,还拓展了表现力和样式适应性。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
高性能多模态AI模型
Gemini Pro是DeepMind推出的一款高性能多模态AI模型,专为广泛的任务设计,具有高达两百万token的长上下文窗口,能够处理大规模文档、代码、音频和视频等。它在多个基准测试中表现出色,包括代码生成、数学问题解决和多语言翻译等。
© 2025 AIbase 备案号:闽ICP备08105208号-14