需求人群:
"XHand主要面向需要在虚拟环境中进行自然交互和沉浸式体验的用户,如游戏开发者、虚拟现实内容创作者和动画制作者。它通过提供高质量的手部模型和动画,使得用户能够创建更加逼真和富有表现力的虚拟角色。"
使用场景示例:
游戏开发者使用XHand为角色设计逼真的手部动作
虚拟现实应用中,用户通过XHand实现手部追踪和交互
动画制作者利用XHand生成具有丰富表情和动作的虚拟角色手部动画
产品特色:
实时捕捉手部几何形状、外观和姿势
使用特征嵌入模块预测手部变形位移、反照率和线性混合蒙皮权重
基于网格的神经渲染器实现照片级真实感渲染
训练过程中采用部分感知拉普拉斯平滑策略,有效保持必要细节并消除不需要的伪影
在InterHand2.6M和DeepHandMesh数据集上进行实验评估,证明其高保真度和实时性能
使用教程:
1. 访问XHand产品页面并了解基本信息
2. 阅读文档和代码,了解模型的工作原理和使用方法
3. 下载并安装必要的软件和依赖库
4. 准备多视角手部视频或图片作为输入数据
5. 运行XHand模型,输入手部数据并观察渲染结果
6. 根据需要调整参数,优化手部模型的表现力和真实感
7. 将生成的手部模型和动画应用到项目中
浏览量:20
最新流量情况
月访问量
284
平均访问时长
00:00:00
每次访问页数
1.02
跳出率
43.62%
流量来源
直接访问
36.54%
自然搜索
44.11%
邮件
0.29%
外链引荐
12.83%
社交媒体
3.72%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
乌克兰
100.00%
实时生成高细节表达性手势头像
XHand是由浙江大学开发的一个实时生成高细节表达性手势头像的模型。它通过多视角视频创建,并利用MANO姿势参数生成高细节的网格和渲染图,实现了在不同姿势下的实时渲染。XHand在图像真实感和渲染质量上具有显著优势,特别是在扩展现实和游戏领域,能够即时渲染出逼真的手部图像。
使用手机扫描创建逼真可重新照明的头像模型
URAvatar是一种新型的头像生成技术,它能够通过手机扫描在未知光照条件下创建出逼真的、可重新照明的头部头像。与传统的通过逆向渲染估计参数反射率参数的方法不同,URAvatar直接模拟学习辐射传递,将全局光照传输有效地整合到实时渲染中。这项技术的重要性在于它能够从单一环境的手机扫描中重建出在多种环境中看起来都逼真的头部模型,并且能够实时驱动和重新照明。
文本驱动的3D头像生成与全身动画表达
DreamWaltz-G是一个创新的框架,用于从文本驱动生成3D头像和表达性的全身动画。它的核心是骨架引导的评分蒸馏和混合3D高斯头像表示。该框架通过整合3D人类模板的骨架控制到2D扩散模型中,提高了视角和人体姿势的一致性,从而生成高质量的头像,解决了多重面孔、额外肢体和模糊等问题。此外,混合3D高斯头像表示通过结合神经隐式场和参数化3D网格,实现了实时渲染、稳定的SDS优化和富有表现力的动画。DreamWaltz-G在生成和动画3D头像方面非常有效,无论是视觉质量还是动画表现力都超越了现有方法。此外,该框架还支持多种应用,包括人类视频重演和多主题场景组合。
快速生成高质量的3D人头模型
GGHead是一种基于3D高斯散射表示的3D生成对抗网络(GAN),用于从2D图像集合中学习3D头部先验。该技术通过利用模板头部网格的UV空间的规则性,预测一组3D高斯属性,从而简化了预测过程。GGHead的主要优点包括高效率、高分辨率生成、全3D一致性,并且能够实现实时渲染。它通过一种新颖的总变差损失来提高生成的3D头部的几何保真度,确保邻近渲染像素来自UV空间中相近的高斯。
一种用于沉浸式以人为中心的体积视频的鲁棒双高斯表示方法
Robust Dual Gaussian Splatting (DualGS) 是一种新型的基于高斯的体积视频表示方法,它通过优化关节高斯和皮肤高斯来捕捉复杂的人体表演,并实现鲁棒的跟踪和高保真渲染。该技术在SIGGRAPH Asia 2024上展示,能够实现在低端移动设备和VR头显上的实时渲染,提供用户友好和互动的体验。DualGS通过混合压缩策略,实现了高达120倍的压缩比,使得体积视频的存储和传输更加高效。
城市级NeRF实景三维大模型,沉浸式体验。
书生·天际LandMark是一个基于NeRF技术的实景三维大模型,它实现了100平方公里的4K高清训练,具备实时渲染和自由编辑的能力。这项技术代表了城市级三维建模和渲染的新高度,具有极高的训练和渲染效率,为城市规划、建筑设计和虚拟现实等领域提供了强大的工具。
3D人体姿态估计技术
AvatarPose是一种用于从稀疏多视角视频中估计多个紧密互动人的3D姿态和形状的方法。该技术通过重建每个人的个性化隐式神经化身,并将其作为先验,通过颜色和轮廓渲染损失来细化姿态,显著提高了在紧密互动中估计3D姿态的鲁棒性和精确度。
生成多视角视频的模型
Stable Video 4D (SV4D) 是基于 Stable Video Diffusion (SVD) 和 Stable Video 3D (SV3D) 的生成模型,它接受单一视角的视频并生成该对象的多个新视角视频(4D 图像矩阵)。该模型训练生成 40 帧(5 个视频帧 x 8 个摄像机视角)在 576x576 分辨率下,给定 5 个相同大小的参考帧。通过运行 SV3D 生成轨道视频,然后使用轨道视频作为 SV4D 的参考视图,并输入视频作为参考帧,进行 4D 采样。该模型还通过使用生成的第一帧作为锚点,然后密集采样(插值)剩余帧来生成更长的新视角视频。
从单张图片生成交互式3D场景
WonderWorld是一个创新的3D场景扩展框架,允许用户基于单张输入图片和用户指定的文本探索和塑造虚拟环境。它通过快速高斯体素和引导扩散的深度估计方法,显著减少了计算时间,生成几何一致的扩展,使3D场景的生成时间少于10秒,支持实时用户交互和探索。这为虚拟现实、游戏和创意设计等领域提供了快速生成和导航沉浸式虚拟世界的可能性。
高效、表现力强、可编辑的数字头像生成
E3Gen是一种新型的数字头像生成方法,能够实时生成高保真度的头像,具有详细的衣物褶皱,并支持多种视角和全身姿势的全面控制,以及属性转移和局部编辑。它通过将3D高斯编码到结构化的2D UV空间中,解决了3D高斯与当前生成流程不兼容的问题,并探索了在涉及多个主体的训练中3D高斯的表现力动画。
高效渲染大规模场景的实时视图合成技术
Level of Gaussians (LoG) 是一种用于高效渲染三维场景的新技术,它通过树状结构存储高斯基元,并通过渐进式训练策略从图像中端到端重建,有效克服局部最小值,实现实时渲染数百万平方千米的区域,是渲染大规模场景的重要进步。
一种用于实时渲染大型数据集的分层3D高斯表示方法
这项研究提出了一种新的分层3D高斯表示方法,用于实时渲染非常大的数据集。该方法通过3D高斯splatting技术提供了优秀的视觉质量、快速的训练和实时渲染能力。通过分层结构和有效的细节层次(Level-of-Detail, LOD)解决方案,可以高效渲染远处内容,并在不同层次之间实现平滑过渡。该技术能够适应可用资源,通过分而治之的方法训练大型场景,并将其整合到一个可以进一步优化以提高高斯合并到中间节点时的视觉质量的层级结构中。
实时3D角色生成平台
Museclip是一个基于3D模型的实时人物设计平台,拥有智能编辑、魔法画笔和文字提示等功能,可以在几秒内将3D人物基础模型转换成逼真的角色形象,大幅提高人物设计的效率。它的主要优势有:实时渲染技术,快速定制化,智能简洁的设计流程,为用户提供极大的创作自由度。
GauHuman是一个3D人体模型,利用高斯扩散进行快速训练和实时渲染。
GauHuman是一个基于高斯扩散的3D人体模型,它能在短时间内(1-2分钟)完成训练,并提供实时渲染(最高达189 FPS),与现有基于NeRF的隐式表示建模框架相比,后者需要数小时训练和每帧数秒渲染。GauHuman在规范空间对高斯扩散进行编码,并利用线性混合皮肤(LBS)将3D高斯从规范空间转换到姿态空间,在此过程中设计了有效的姿态和LBS细化模块,以微不足道的计算成本学习3D人体的细节。此外,GauHuman还通过3D人体先验初始化和修剪3D高斯,并通过KL散度引导进行拆分/克隆,以及进一步加速的新型合并操作,从而实现快速优化。
使用单眼视频记录产生实时4D头像合成的神经网络方法
BakedAvatar是一种用于实时神经头像合成的全新表示,可部署在标准多边形光栅化流水线中。该方法从学习到的头部等值面提取可变形的多层网格,并计算可烘焙到静态纹理中的表情、姿势和视角相关外观,从而为实时4D头像合成提供支持。我们提出了一个三阶段的神经头像合成流水线,包括学习连续变形、流形和辐射场,提取分层网格和纹理,以及通过微分光栅化来微调纹理细节。实验结果表明,我们的表示产生了与其他最先进方法相当的综合结果,并显著减少了所需的推理时间。我们进一步展示了从单眼视频中产生的各种头像合成结果,包括视图合成、面部重现、表情编辑和姿势编辑,所有这些都以交互式帧率进行。
高保真几何渲染
这款产品是一种3D GAN技术,通过学习基于神经体积渲染的方法,能够以前所未有的细节解析细粒度的3D几何。产品采用学习型采样器,加速3D GAN训练,使用更少的深度采样,实现在训练和推断过程中直接渲染完整分辨率图像的每个像素,同时学习高质量的表面几何,合成高分辨率3D几何和严格视角一致的图像。产品在FFHQ和AFHQ上展示了最先进的3D几何质量,为3D GAN中的无监督学习建立了新的标准。
快速从单视图训练高保真的人体3D高斯模型
Human101是一个快速从单视图重建人体的框架。它能够在100秒内训练3D高斯模型,并以60FPS以上渲染1024分辨率的图像,而无需预先存储每帧的高斯属性。Human101管道如下:首先,从单视图视频中提取2D人体姿态。然后,利用姿态驱动3D模拟器生成匹配的3D骨架动画。最后,基于动画构建时间相关的3D高斯模型,进行实时渲染。
无标记实时动作捕捉技术
Cyanpuppets是一个专注于2D视频生成3D动作模型的AI算法团队。他们的无标记动作捕捉系统通过2个RGB摄像头完成超过208个关键点的捕捉,支持UE5和UNITY 2021版本,延迟仅为0.1秒。Cyanpuppets支持大多数骨骼标准,其技术广泛应用于游戏、电影和其他娱乐领域。
在线图像集合的神经渲染
NeROIC是一种从在线图像集合中获取物体表示的新方法,可以捕捉具有不同相机、光照和背景的照片中任意物体的高质量几何和材质属性。它可以用于新视角合成、重新照明和和谐背景合成等物体中心渲染应用。通过扩展神经辐射场的多阶段方法,我们首先推断表面几何并改进粗略估计的初始相机参数,同时利用粗略的前景物体掩码来提高训练效率和几何质量。我们还引入了一种稳健的法线估计技术,可以消除几何噪声的影响,同时保留关键细节。最后,我们提取表面材质属性和环境光照,用球谐函数表示,并处理瞬态元素,如锐利阴影。这些组件的结合形成了一个高度模块化和高效的物体获取框架。广泛的评估和比较证明了我们的方法在捕捉用于渲染应用的高质量几何和外观属性方面的优势。
3D建模无忧
Sloyd是一个快速生成3D模型的平台。选择一个生成器,进行微调,即可完成。可以通过实时预览来生成模型。Sloyd提供不断扩展的生成器库,快速定制模型,可用于实时渲染和多种级别的细节。生成的模型可以根据需要进行定制,并且已经进行了UV展开和优化,方便进行贴图和使用。Sloyd适用于各种风格的模型,提供无限的变化,并且支持实时生成。
© 2024 AIbase 备案号:闽ICP备08105208号-14