需求人群:
"目标受众为需要处理大量文档数据的企业和研究人员,特别是那些需要从文档中快速检索信息的用户。该产品或技术适合他们,因为它可以大幅减少处理文档的时间,提高检索的精确度,并且可以集成到现有的工作流程中。"
使用场景示例:
企业使用V-RAG架构快速检索合同文档中的关键条款
研究人员利用该系统在学术论文中查找特定研究结果
法律团队用它来检索案件档案中的相关信息
产品特色:
将PDF文件页面转换为图像
使用ColPali作为VLM获取图像嵌入
将嵌入存储在QDrant作为向量数据库
用户通过V-RAG系统提交查询
查询通过VLM获取查询嵌入
使用查询嵌入在向量数据库中搜索相似嵌入
将用户查询和搜索结果的最佳匹配图像再次传递给能理解图像的模型
模型根据查询和图像生成响应
使用教程:
1. 确保你有一个Hugging Face账户并使用`transformers-cli login`登录
2. 确保你有OpenAI API的密钥,并将其放置在dotenv文件中
3. 安装Python 3.11或更高版本
4. 使用`pip install modal`安装Modal
5. 运行`modal setup`进行配置
6. 使用`modal serve main.py`启动demo
7. 通过浏览器访问Modal提供的URL,并附加`/docs`来使用API
8. 点击`POST /collections`端点,上传PDF文件进行索引
9. 使用`POST /search`端点搜索相似页面,并获取OpenAI API的响应
浏览量:7
最新流量情况
月访问量
4.95m
平均访问时长
00:06:29
每次访问页数
5.68
跳出率
37.69%
流量来源
直接访问
51.66%
自然搜索
33.21%
邮件
0.04%
外链引荐
12.84%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.79%
德国
3.71%
印度
9.03%
俄罗斯
4.40%
美国
18.49%
利用视觉语言模型的文档检索系统
vision-is-all-you-need是一个展示Vision RAG (V-RAG)架构的演示项目。V-RAG架构使用视觉语言模型(VLM)直接将PDF文件页面(或其他文档)嵌入为向量,无需繁琐的分块处理。该技术的重要性在于它能够大幅提高文档检索的效率和准确性,特别是在处理大量数据时。产品背景信息显示,这是一个利用最新人工智能技术,提高文档处理能力的创新工具。目前,该项目是开源的,可以免费使用。
无限画布SDK,为React开发者提供协作白板和画布体验
tldraw是一个为React开发者设计的无限画布SDK,它允许开发者在其产品中添加协作白板功能或创造新的基于画布的体验。该SDK包含组件、API和服务,支持开发者构建高性能、可定制的画布应用。tldraw以其强大的功能、实时协作能力和对开发者友好的设计而受到好评。它适用于需要在Web上实现复杂画布交互的各类应用,从个人项目到企业级解决方案。tldraw提供免费带有水印的版本,并提供付费版本以去除水印并获取额外支持。
快速高效的生成型AI模型
Command R7B是Cohere公司推出的一款高性能、可扩展的大型语言模型(LLM),专为企业级应用设计。它在保持较小模型体积的同时,提供了一流的速度、效率和质量,能够在普通的GPU、边缘设备甚至CPU上部署,大幅降低了AI应用的生产部署成本。Command R7B在多语言支持、引用验证检索增强生成(RAG)、推理、工具使用和代理行为等方面表现出色,特别适合需要优化速度、成本性能和计算资源的企业使用案例。
将各种文件类型转换为Markdown格式的Python库
E2M是一个Python库,能够解析并转换多种文件类型到Markdown格式。它采用了解析器-转换器架构,支持包括doc、docx、epub、html、htm、url、pdf、ppt、pptx、mp3和m4a等多种文件格式的转换。E2M项目的最终目标是为检索增强生成(RAG)和模型训练或微调提供高质量的数据。
一个用于可视化和探索微软GraphRAG工具的网络工具。
GraphRAG Visualizer是一个基于网络的工具,旨在可视化和探索微软GraphRAG工具产生的数据。GraphRAG是微软开发的一种用于生成图结构数据的技术,GraphRAG Visualizer通过让用户上传parquet文件,无需额外软件或脚本即可轻松查看和分析数据。该工具的主要优点包括图形可视化、数据表格展示、搜索功能以及本地处理数据,确保数据安全和隐私。
开源本地RAG,集成ChatGPT和MCP能力
Minima是一个开源的、完全本地化的RAG(Retrieval-Augmented Generation)模型,具备与ChatGPT和MCP(Model Context Protocol)集成的能力。它支持三种模式:完全本地安装、通过ChatGPT查询本地文档以及使用Anthropic Claude查询本地文件。Minima的主要优点包括本地化处理数据,保护隐私,以及能够利用强大的语言模型来增强检索和生成任务。产品背景信息显示,Minima支持多种文件格式,并允许用户自定义配置以适应不同的使用场景。Minima是免费开源的,定位于需要本地化AI解决方案的开发者和企业。
基于Qwen>=2.0的Agent框架和应用,支持函数调用、代码解释器、RAG和Chrome扩展。
Qwen-Agent是一个基于Qwen>=2.0构建的Agent框架,它具备指令遵循、工具使用、规划和记忆能力。该框架提供了如浏览器助手、代码解释器和自定义助手等示例应用。Qwen-Agent的主要优点包括其高度的可扩展性和模块化设计,允许开发者根据需要集成不同的工具和功能。产品背景信息显示,Qwen-Agent旨在为开发者提供一个强大的工具集,以构建和部署基于大型语言模型的应用程序。Qwen-Agent在GitHub上开源,允许社区贡献和协作。
开源AI代理项目,展示如何构建强大的AI代理并流式传输响应及生成工件。
PostBot 3000是一个开源项目,展示了如何构建一个强大的AI代理,流式传输响应并生成工件。该项目使用LangGraph Python构建AI工作流,并使用FastAPI创建一个健壮的API。它利用了多种技术栈,包括LangGraph、Vercel AI SDK、gpt-4o-mini、FastAPI、Next.js、TailwindCSS等。PostBot 3000的开源特性使得任何想要实现类似解决方案的人都能够更容易地进行开发和部署。
快速高效的非结构化数据提取工具
Extractous是一个用Rust编写的非结构化数据提取工具,提供多语言绑定。它专注于从各种文件类型(如PDF、Word、HTML等)中提取内容和元数据,并且性能优异,内存占用低。Extractous通过原生代码执行实现快速处理速度和低内存使用,支持多种文件格式,并集成了Apache Tika和tesseract-ocr技术,使其能够处理广泛的文件类型并进行OCR识别。该工具的开源性质和Apache 2.0许可使其可以免费用于商业用途,适合需要处理大量文档数据的企业和开发者。
创建您自己的高级搜索引擎,结合AI技术。
Inquir是一个强大的工具,用于创建个性化的搜索引擎,根据您的数据量身定制。它解锁了诸如自定义搜索解决方案、数据组合、AI驱动的检索增强生成(RAG)系统以及上下文感知搜索功能等强大功能。通过启动您的引擎或安排演示,迈向改善用户体验的第一步。
轻量级、快速的RAG文本分块库
Chonkie是一个为检索增强型生成(RAG)应用设计的文本分块库,它轻量级、快速,并且易于使用。该库提供了多种文本分块方法,支持多种分词器,并且具有高性能。Chonkie的主要优点包括丰富的功能、易用性、快速处理速度、广泛的支持和轻量级的设计。它适用于需要高效处理文本数据的开发者和研究人员,特别是在自然语言处理和机器学习领域。Chonkie是开源的,遵循MIT许可证,可以免费使用。
AI优先的基础设施API,提供搜索、推荐和RAG服务
Trieve是一个AI优先的基础设施API,结合了语言模型和工具,用于微调排名和相关性,提供一站式的搜索、推荐、RAG和分析解决方案。它能够自动持续改进,基于数十个反馈信号,确保相关性。Trieve支持语义向量搜索、BM25和SPlade全文搜索,以及混合搜索,结合全文搜索和语义向量搜索。此外,它还提供了商品推销和相关性调整功能,帮助用户通过API或无代码仪表板调整搜索结果以实现KPI。Trieve建立在最佳基础之上,使用开源嵌入模型和LLMs,运行在自己的服务器上,确保数据安全。
A tool for integrating private data with AI large language models.
Dabarqus是一个Retrieval Augmented Generation(RAG)框架,它允许用户将私有数据实时提供给大型语言模型(LLM)。这个工具通过提供REST API、SDKs和CLI工具,使得用户能够轻松地将各种数据源(如PDF、电子邮件和原始数据)存储到语义索引中,称为“记忆库”。Dabarqus支持LLM风格的提示,使用户能够以简单的方式与记忆库进行交互,而无需构建特殊的查询或学习新的查询语言。此外,Dabarqus还支持多语义索引(记忆库)的创建和使用,使得数据可以根据主题、类别或其他分组方式进行组织。Dabarqus的产品背景信息显示,它旨在简化私有数据与AI语言模型的集成过程,提高数据检索的效率和准确性。
快速、准确的生产级RAG管道
Vectorize是一个专注于将非结构化数据转化为优化的向量搜索索引的平台,专为检索增强生成(RAG)而设计。它通过连接内容管理系统、文件系统、CRM、协作工具等多种数据源,帮助用户创建提高生产力的辅助系统和创新的客户体验。Vectorize的主要优点包括易于使用、快速部署和高精度的搜索结果,适合需要处理大量数据并希望快速实现AI应用的企业。
一个可以本地与多个PDF文件进行对话的聊天机器人。
rag-chatbot是一个基于人工智能技术的聊天机器人模型,它能够让用户通过自然语言与多个PDF文件进行交互。该模型使用了最新的机器学习技术,如Huggingface和Ollama,来实现对PDF内容的理解和回答生成。它的重要性在于能够处理大量文档信息,为用户提供快速、准确的问答服务。产品背景信息表明,这是一个开源项目,旨在通过技术创新提升文档处理的效率。目前该项目是免费的,主要面向开发者和技术爱好者。
现代国际化平台,快速实现产品多语言支持。
Quetzal是一个现代国际化平台,旨在帮助用户快速将产品翻译成多种语言,以获得全球新客户。该平台提供工具,支持20多种语言,与Next.js和React兼容,并且拥有快速设置流程,仅需约10分钟。Quetzal利用人工智能技术,结合应用程序的上下文,在几分钟内实现最佳翻译效果。它还提供了一个仪表板,让用户可以在一个地方查看和管理所有的字符串。产品背景信息显示,Quetzal由Quetzal Labs, Inc.在奥克兰精心打造,并且提供了一个慷慨的免费计划,直到用户添加第二种语言。
终端中的个人AI助手,具备本地工具。
gptme是一个运行在终端的个人AI助手,它装备了本地工具,可以编写代码、使用终端、浏览网页、视觉识别等。它是一个不受软件、互联网访问、超时或隐私问题限制的ChatGPT“代码解释器”的本地替代方案。
集成Firecrawl的OpenAI实时API控制台
firecrawl-openai-realtime是一个集成了Firecrawl的OpenAI实时API控制台,旨在为开发者提供一个交互式的API参考和检查器。它包括两个实用库,openai/openai-realtime-api-beta作为参考客户端(适用于浏览器和Node.js),以及/src/lib/wavtools,后者允许在浏览器中简单管理音频。该产品是使用create-react-app创建的React项目,并通过Webpack打包。
将你的草图转化为应用程序
Napkins.dev 是一个利用人工智能将网站设计草图转换成实际应用程序的平台。它使用 Llama 3.2 90B Vision 模型,可以识别上传的图片并生成 React + Tailwind 代码。这个工具对于前端开发者来说非常有用,因为它可以节省大量的时间,让他们专注于更复杂的开发任务。
探索ReAct聊天机器人的实验性项目
curiosity是一个基于ReAct框架的聊天机器人项目,旨在通过LangGraph和FastHTML技术栈探索和构建类似Perplexity的用户交互体验。项目核心是一个简单的ReAct代理,使用Tavily搜索增强文本生成。支持三种不同的LLMs(大型语言模型),包括OpenAI的gpt-4o-mini、Groq的llama3-groq-8b-8192-tool-use-preview以及Ollama的llama3.1。项目通过FastHTML构建前端,尽管在调试过程中可能遇到一些挑战,但整体上提供了快速的用户体验。
无需编码即可构建生产就绪的LLM应用程序
Epsilla是一个无需编码的RAG即服务(RAG-as-a-Service)平台,它允许用户基于私有或公共数据构建生产就绪的大型语言模型(Large Language Model, LLM)应用程序。该平台提供了一站式服务,包括数据管理、RAG工具、CI/CD风格的评估以及企业级安全措施,旨在降低总拥有成本(TCO),提高查询速度和吞吐量,同时确保信息的时效性和安全性。
开源的RAG基础聊天工具,与文档对话。
kotaemon是一个开源的、基于RAG(Retrieval-Augmented Generation)模型的工具,旨在通过聊天界面与用户文档进行交互。它支持多种语言模型API提供商和本地语言模型,提供了一个干净、可定制的用户界面,适用于终端用户进行文档问答以及开发者构建自己的RAG问答流程。
开发者友好的RAG即服务。
Ragie是一款面向开发者的RAG(Retrieval-Augmented Generation)即服务产品,它通过易于使用的API和SDK,帮助开发者快速启动并实现生成式AI应用。Ragie具备高级功能,如LLM重排、摘要索引、实体提取等,确保提供精确可靠的信息。它还支持与Google Drive、Notion等流行数据源的直接连接,并支持自动同步,保持数据最新。Ragie由Craft Ventures领导,提供简单明了的定价策略,无需设置费用或隐藏成本。
AI驱动的生成式UI工具
v0是由Vercel推出的基于AI的生成式用户界面系统,它可以根据简单的文本提示生成适用于项目的React代码。v0使用AI模型生成代码,基于shadcn/ui和Tailwind CSS,提供了易于复制和粘贴的代码。v0不使用任何Vercel客户数据或代码进行训练,保证了数据的安全性和隐私性。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
一个适合学习、使用、自主扩展的RAG系统。
Easy-RAG是一个检索增强生成(RAG)系统,它不仅适合学习者了解和掌握RAG技术,同时也便于开发者使用和进行自主扩展。该系统通过集成知识图谱提取解析工具、rerank重新排序机制以及faiss向量数据库等技术,提高了检索效率和生成质量。
快速将UI设计图转换为React代码
Ocode AI是一个AI驱动的编程辅助工具,能够帮助开发者通过上传UI设计图,自动生成React代码,从而加快开发速度,提高开发效率。它通过实时代码生成、预览、部署和与AI的交互来修改代码,实现了从需求收集到代码编写、单元测试、部署的全流程自动化。
© 2024 AIbase 备案号:闽ICP备08105208号-14