浏览量:67
最新流量情况
月访问量
1064.47k
平均访问时长
00:01:42
每次访问页数
1.81
跳出率
63.97%
流量来源
直接访问
36.86%
自然搜索
48.60%
邮件
0.07%
外链引荐
9.80%
社交媒体
3.95%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
4.67%
中国
4.33%
德国
3.93%
印度
9.70%
美国
26.78%
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
统一的深度学习训练框架
AXLearn是Apple基于JAX和XLA构建的深度学习库,采用面向对象的方式解决软件工程在大规模深度学习模型开发中的挑战。它的配置系统允许用户从可重用的构建块中组合模型,并与其他库(如Flax和Hugging Face transformers)集成。AXLearn旨在扩展训练规模,支持数百亿参数的模型在数千个加速器上高效训练,适合在公有云上部署。它还采用全局计算范式,允许用户描述全局虚拟计算机上的计算,而不是单个加速器。AXLearn支持广泛的应用,包括自然语言处理、计算机视觉和语音识别,并包含用于训练最先进模型的基线配置。
Apple官方机器学习模型训练框架
Create ML是一个Apple官方发布的机器学习模型训练框架,可以非常方便地在Mac设备上训练Core ML模型。它提供了图像、视频、文本等多种模型类型,用户只需要准备数据集和设置参数,就可以开始模型训练。Create ML还提供了Swift API,支持在iOS等平台进行模型训练。
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
提供多种预训练模型,支持多维度筛选,助力AI模型应用与开发。
该平台是一个专注于AI预训练模型的资源平台,整合了大量不同类型、规模和应用场景的预训练模型。其重要性在于为AI开发者和研究人员提供了便捷的模型获取渠道,降低了模型开发的门槛。主要优点包括模型分类细致、多维度筛选功能强大、信息展示详细且提供智能推荐。产品背景是随着AI技术的发展,对预训练模型的需求日益增长,平台应运而生。平台主要定位为AI模型资源平台,部分模型免费商用,部分可能需要付费,具体价格因模型而异。
简化机器学习模型的训练和部署
Sagify是一个命令行工具,可以在几个简单步骤中训练和部署机器学习/深度学习模型在AWS SageMaker上!它消除了配置云实例进行模型训练的痛苦,简化了在云上运行超参数作业的过程,同时不再需要将模型交给软件工程师进行部署。Sagify提供了丰富的功能,包括AWS账户配置、Docker镜像构建、数据上传、模型训练、模型部署等。它适用于各种使用场景,帮助用户快速构建和部署机器学习模型。
先进机器智能的下一步
Meta 发布了 Video Joint Embedding Predictive Architecture (V-JEPA) 模型,这是推进机器智能的关键一步,带来对世界更具实地认识。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
深度学习API,简单、灵活、强大
Keras是一个为人类设计的API,遵循最佳实践,简化认知负荷,提供一致而简单的API,最大限度地减少常见用例所需的用户操作次数,并提供清晰而可操作的错误信息。Keras旨在为任何希望推出基于机器学习的应用程序的开发人员提供不公平的优势。Keras专注于调试速度、代码优雅性和简洁性、可维护性和可部署性。使用Keras,您的代码库更小,更易读,更易于迭代。您的模型在XLA编译和Autograph优化的加持下运行更快,并且更容易在每个平台(服务器、移动设备、浏览器、嵌入式设备)上部署。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
深度学习天气预测模型
GraphCast是由Google DeepMind开发的深度学习模型,专注于全球中期天气预报。该模型通过先进的机器学习技术,能够预测天气变化,提高预报的准确性和速度。GraphCast模型在科学研究中发挥重要作用,有助于更好地理解和预测天气模式,对气象学、农业、航空等多个领域具有重要价值。
AI训练入门,超级易用的AI训练平台
训练面板是一个为初学者提供超级易用的AI训练平台。对于高级用户,我们提供可定制的设置。训练面板具有简洁直观的界面,使用户能够轻松地训练自己的AI模型。它支持各种机器学习算法和深度学习框架,包括TensorFlow和PyTorch等。通过训练面板,用户可以通过上传数据集、设置训练参数和监控训练进度来训练和优化自己的AI模型。训练面板还提供模型评估和预测功能,帮助用户评估模型的性能并进行预测。定价灵活,提供免费试用和付费订阅选项。
数学作为黑箱的深度学习模型
MathBlackBox是一个深度学习模型,旨在探索数学问题解决的黑箱方法。它使用VLLM或其他OpenAI兼容的方法,通过Huggingface工具包和OpenAI进行推理,支持在Slurm环境下运行,并能够处理多种数据集。该项目目前处于早期阶段,需要充分测试后才能部署到实际产品中。
构建和部署AI模型的机器学习框架
Cerebrium是一个机器学习框架,通过几行代码轻松训练、部署和监控机器学习模型。我们在无服务器的CPU/GPU上运行所有内容,并仅根据使用量收费。您可以从Pytorch、Huggingface、Tensorflow等库部署模型。
深度学习算法与大模型面试指南,持续更新的面试题目集合。
DeepLearing-Interview-Awesome-2024 是一个开源的面试题目集合项目,专注于深度学习算法和大模型领域的面试准备。该项目由社区成员共同维护,旨在提供最新的面试题目和答案解析,帮助求职者和研究人员深入理解深度学习领域的前沿技术和应用。它包含了丰富的面试题目,覆盖了大语言模型、视觉模型、通用问题等多个方面,是准备深度学习相关职位的宝贵资源。
从零开始学习深度学习,实现GPT模型
zero_to_gpt是一个旨在帮助用户从零基础学习深度学习,并最终实现训练自己的GPT模型的教程。随着人工智能技术走出实验室并广泛应用于各行各业,社会对于能够理解并应用AI技术的人才需求日益增长。本教程结合理论与实践,通过解决实际问题(如天气预测、语言翻译等)来深入讲解深度学习的理论基础,如梯度下降和反向传播。课程内容从基础的神经网络架构和训练方法开始,逐步深入到复杂主题,如变换器、GPU编程和分布式训练。
通过完全托管的基础设施、工具和工作流程构建、训练和部署机器学习模型
Amazon SageMaker是一个完全托管的机器学习服务,能够帮助开发人员和数据科学家快速且低成本地构建、训练和部署高质量的机器学习模型。它提供了一个完整的开发环境,包含了可视化界面、Jupyter笔记本、自动机器学习、模型训练和部署等功能。用户无需管理任何基础设施,就可以通过SageMaker构建端到端的机器学习解决方案。
探索YouTube上最新的机器学习/人工智能课程
ML-YouTube-Courses是一个开源项目,致力于整理和索引YouTube上最新的、最好的机器学习课程。项目包含各种主题的课程,如机器学习、深度学习、自然语言处理、计算机视觉等,涵盖基础知识和前沿技术。该项目帮助开发者和学习者高效地发现优质的在线教程。
轻松创建你自己的机器学习模型
Teachable Machine是一个基于网页的工具,使用户可以快速轻松地创建机器学习模型,无需专业知识或编码能力。用户只需收集并整理样本数据,Teachable Machine将自动训练模型,然后用户可以测试模型准确性,最后将模型导出使用。
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
深度学习领域的经典教材中文翻译
《深度学习》是一本由Simon J.D. Prince所著的深度学习领域的经典教材,MIT Press于2023年12月5日出版。本书涵盖了深度学习领域的许多关键概念,适合初学者和有经验的开发者阅读。本仓库提供了该书的中文翻译,翻译基于原书的最新版本,使用ChatGPT进行机翻并进行人工审核,确保翻译的准确性。
一键部署机器学习模型到生产环境
PoplarML 是一个能够以极低的工程成本部署可扩展的机器学习系统到生产环境的平台。它提供了一键部署的功能,可无缝地将机器学习模型部署到一组GPU上。用户可以通过REST API端点实时调用模型进行推断。PoplarML 支持各种深度学习框架,如Tensorflow、Pytorch和JAX。除此之外,PoplarML 还提供了多项优势,包括高效的实时推断、自动扩展能力以适应流量需求、灵活的部署选项等。定价方面,请访问官方网站获取详细信息。
深入理解深度学习的原理与应用
《Understanding Deep Learning》是一本深入探讨深度学习原理和应用的书籍。它提供了丰富的数学背景知识、监督学习、神经网络的构建与训练等深度学习领域的全面内容。书中提供的Python笔记本练习帮助读者通过实践来加深理解。此外,还有为教师提供的资源,包括图像、幻灯片和教辅材料。
机器学习模型运行和部署的工具
Replicate是一款机器学习模型运行和部署的工具,无需自行配置环境,可以快速运行和部署机器学习模型。Replicate提供了Python库和API接口,支持运行和查询模型。社区共享了成千上万个可用的机器学习模型,涵盖了文本理解、视频编辑、图像处理等多个领域。使用Replicate和相关工具,您可以快速构建自己的项目并进行部署。
无需编码,自动训练、评估和部署先进的机器学习模型。
AutoTrain是Hugging Face生态系统中的一个自动化机器学习(AutoML)工具,它允许用户通过上传数据来训练定制的机器学习模型,而无需编写代码。该工具自动寻找最适合数据的模型,并快速部署。它支持多种机器学习任务,包括文本分类、图像分类、问答、翻译等,并且支持所有Hugging Face Hub上的语言。用户的数据在服务器上保持私密,并通过加密保护数据传输。根据用户选择的硬件,按分钟计费。
CoreNet 是一个用于训练深度神经网络的库。
CoreNet 是一个深度神经网络工具包,使研究人员和工程师能够训练标准和新颖的小型和大型规模模型,用于各种任务,包括基础模型(例如 CLIP 和 LLM)、对象分类、对象检测和语义分割。
高效训练高质量文本到图像扩散模型
ml-mdm是一个Python包,用于高效训练高质量的文本到图像扩散模型。该模型利用Matryoshka扩散模型技术,能够在1024x1024像素的分辨率上训练单一像素空间模型,展现出强大的零样本泛化能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14