需求人群:
"Qwen2.5-Math的目标受众主要是教育工作者、学生、研究人员以及对数学问题求解有需求的开发者。它特别适合需要高效、准确解决数学问题的用户,无论是在学术研究还是在教育领域,都能提供强大的支持。"
使用场景示例:
教师使用Qwen2.5-Math为学生提供复杂的数学问题解答
研究人员利用模型进行数学理论的验证和算法开发
学生通过模型辅助学习,提高数学解题能力
产品特色:
支持中英双语数学问题解答
使用思维链(CoT)和工具集成推理(TIR)技术
在多个数学基准测试中取得高分
提供基础模型和指令微调模型,满足不同需求
支持数学预训练数据集的构建和参数初始化
通过迭代生成微调数据和强化学习提高解题质量
提供Demo体验,支持本地代码执行
使用教程:
访问Qwen2.5-Math的GitHub页面或相关平台
根据需要选择合适的模型版本进行下载或在线使用
阅读文档,了解模型的使用方式和参数设置
在本地或云环境中配置所需的运行环境
输入数学问题,使用模型进行解答
根据模型的输出结果进行分析和验证
在教学或研究中应用模型的解答结果
浏览量:64
最新流量情况
月访问量
1298.98k
平均访问时长
00:00:58
每次访问页数
1.60
跳出率
59.33%
流量来源
直接访问
38.95%
自然搜索
43.45%
邮件
0.07%
外链引荐
14.30%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
29.74%
印度
4.41%
俄罗斯
2.64%
美国
17.61%
世界领先的数学开源大语言模型
Qwen2.5-Math是一系列专门针对数学问题设计的开源大语言模型,包括基础模型和指令微调模型,支持中英双语,能够通过思维链(CoT)和工具集成推理(TIR)方式解决数学问题。该模型在多个数学基准测试中表现优异,特别是在精确计算和算法操作方面。Qwen2.5-Math的开发背景是提升大语言模型在数学领域的应用能力,推动数学教育和研究的发展。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
新一代数学模型,专注于解决复杂数学问题。
Qwen2-Math是一系列基于Qwen2 LLM构建的专门用于数学解题的语言模型。它在数学相关任务上的表现超越了现有的开源和闭源模型,为科学界解决需要复杂多步逻辑推理的高级数学问题提供了重要帮助。
一款开源的14B参数量的数学模型,通过强化学习训练,性能卓越。
Light-R1-14B-DS 是由北京奇虎科技有限公司开发的开源数学模型。该模型基于 DeepSeek-R1-Distill-Qwen-14B 进行强化学习训练,在 AIME24 和 AIME25 数学竞赛基准测试中分别达到了 74.0 和 60.2 的高分,超越了许多 32B 参数量的模型。它在轻量级预算下成功实现了对已经长链推理微调模型的强化学习尝试,为开源社区提供了一个强大的数学模型工具。该模型的开源有助于推动自然语言处理在教育领域的应用,特别是数学问题解决方面,为研究人员和开发者提供了宝贵的研究基础和实践工具。
基于Linux环境快速部署开源大模型的教程
该项目是一个围绕开源大模型的全流程指导教程,包括环境配置、模型部署、高效微调等,简化开源大模型的使用和应用,让更多普通学习者能够使用开源大模型。项目面向对开源大模型感兴趣且想自主上手的学习者,提供详细的环境配置、模型部署和微调方法。
数学作为黑箱的深度学习模型
MathBlackBox是一个深度学习模型,旨在探索数学问题解决的黑箱方法。它使用VLLM或其他OpenAI兼容的方法,通过Huggingface工具包和OpenAI进行推理,支持在Slurm环境下运行,并能够处理多种数据集。该项目目前处于早期阶段,需要充分测试后才能部署到实际产品中。
数学领域的开源AI模型,助力数学竞赛。
Numina Math 7B是由Numina组织开发的AI数学模型,专注于解决高难度的数学问题,特别是在数学竞赛领域。该模型在AI数学奥林匹克竞赛中获得了第一名,显示出其在解决复杂数学问题上的强大能力。Numina是一个非盈利组织,致力于推动数学领域人类和人工智能的发展。
开源代码语言模型,支持多编程语言。
DeepSeek-Coder-V2是一个开源的Mixture-of-Experts代码语言模型,性能可与GPT4-Turbo相媲美,在代码特定任务上表现突出。它通过额外的6万亿个token进一步预训练,增强了编码和数学推理能力,同时保持了在一般语言任务上的相似性能。与DeepSeek-Coder-33B相比,在代码相关任务、推理和一般能力方面都有显著进步。此外,它支持的编程语言从86种扩展到338种,上下文长度从16K扩展到128K。
下一代开源和双语大型语言模型
Yi-9B是01.AI研发的下一代开源双语大型语言模型系列之一。训练数据量达3T,展现出强大的语言理解、常识推理、阅读理解等能力。在代码、数学、常识推理和阅读理解等方面表现卓越,是同尺寸开源模型中的佼佼者。适用于个人、学术和商业用途。
开源代码语言模型,提升编程和数学推理能力。
DeepSeek-Coder-V2是一个开源的专家混合模型(Mixture-of-Experts, MoE),专为代码语言设计,其性能与GPT4-Turbo相当。它在代码特定任务上表现优异,同时在通用语言任务上保持了相当的性能。与DeepSeek-Coder-33B相比,V2版本在代码相关任务和推理能力上都有显著提升。此外,它支持的编程语言从86种扩展到了338种,上下文长度也从16K扩展到了128K。
智能解决数学问题,提升学习效率
AI数学解题器是由数学AI和数学GPT模型(如GPT-4o)驱动的在线工具,旨在提供广泛的数学问题解决方案。它利用先进的人工智能技术,为学生和教师提供详尽的分步解答,增强了对数学概念的理解和解题能力。该产品背景是数学学习中对高效解题工具的需求,定位于免费提供高质量的教育支持。
数学 7b 模型,帮助解决数学问题。
Internlm2 Math 7b 是一个基于 Hugging Face 平台的数学模型,主要用于解决数学问题。它能够处理各种数学题目,包括代数、几何、概率统计等。使用该模型可以提供准确的数学计算和解答,帮助用户学习和理解数学知识。Internlm2 Math 7b 提供简单易用的 API 接口,可以方便地集成到其他应用程序中。该模型基于深度学习技术,具有较高的准确性和可靠性。它适用于教育领域的数学辅助学习、作业辅导等场景。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
数学推理LLM
MathCoder是一款基于开源语言模型的数学推理工具,通过fine-tune模型和生成高质量的数据集,实现了自然语言、代码和执行结果的交替,提高了数学推理能力。MathCoder模型在MATH和GSM8K数据集上取得了最新的最高分数,远远超过其他开源替代品。MathCoder模型不仅在GSM8K和MATH上超过了ChatGPT-3.5和PaLM-2,还在竞赛级别的MATH数据集上超过了GPT-4。
开放数学语言模型
Llemma是一个开放的数学语言模型,提供数据和训练代码。它可以用于数学相关的任务,如定理证明、数学文本生成等。Llemma具有高质量的数学训练数据,可以帮助用户进行数学研究和应用开发。Llemma的优势在于其开放性和灵活性,用户可以根据自己的需求进行定制和扩展。Llemma的定价信息请参考官方网站。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
昆仑万维开源的高性能数学代码推理模型,性能卓越
Skywork-OR1是由昆仑万维天工团队开发的高性能数学代码推理模型。该模型系列在同等参数规模下实现了业界领先的推理性能,突破了大模型在逻辑理解与复杂任务求解方面的能力瓶颈。Skywork-OR1系列包括Skywork-OR1-Math-7B、Skywork-OR1-7B-Preview和Skywork-OR1-32B-Preview三款模型,分别聚焦数学推理、通用推理和高性能推理任务。此次开源不仅涵盖模型权重,还全面开放了训练数据集和完整训练代码,所有资源均已上传至GitHub和Huggingface平台,为AI社区提供了完全可复现的实践参考。这种全方位的开源策略有助于推动整个AI社区在推理能力研究上的共同进步。
7.8亿参数的双语生成模型
EXAONE-3.0-7.8B-Instruct是LG AI Research开发的一款具有7.8亿参数的双语(英语和韩语)预训练生成模型。模型通过8T的精选token进行预训练,并经过监督式微调和直接偏好优化进行后训练,展现出与同类大小的开放模型相比极具竞争力的基准性能。
Light-R1 是一个专注于长链推理(Long COT)的开源项目,通过课程式 SFT、DPO 和 RL 提供从零开始的训练方法。
Light-R1 是一个由 Qihoo360 开发的开源项目,旨在通过课程式监督微调(SFT)、直接偏好优化(DPO)和强化学习(RL)训练长链推理模型。该项目通过去污染数据集和高效的训练方法,实现了从零开始的长链推理能力。其主要优点包括开源的训练数据、低成本的训练方式以及在数学推理领域的卓越性能。项目背景基于当前长链推理模型的训练需求,旨在提供一种透明且可复现的训练方法。项目目前免费开源,适合研究机构和开发者使用。
开源大型语言模型,支持多语言和专业领域应用。
Qwen2.5是一系列基于Qwen2语言模型构建的新型语言模型,包括通用语言模型Qwen2.5,以及专门针对编程的Qwen2.5-Coder和数学的Qwen2.5-Math。这些模型在大规模数据集上进行了预训练,具备强大的知识理解能力和多语言支持,适用于各种复杂的自然语言处理任务。它们的主要优点包括更高的知识密度、增强的编程和数学能力、以及对长文本和结构化数据的更好理解。Qwen2.5的发布是开源社区的一大进步,为开发者和研究人员提供了强大的工具,以推动人工智能领域的研究和发展。
DeepSeek-R1-Distill-Qwen-7B 是一个开源的推理模型,专注于数学、代码和推理任务。
DeepSeek-R1-Distill-Qwen-7B 是一个经过强化学习优化的推理模型,基于 Qwen-7B 进行了蒸馏优化。它在数学、代码和推理任务上表现出色,能够生成高质量的推理链和解决方案。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和效率,适用于需要复杂推理和逻辑分析的场景。
开源双语文生图生成模型
Taiyi-Diffusion-XL是一个开源的基于Stable Diffusion训练的双语文生图生成模型,支持英文和中文的文本到图像生成,相比之前的中文文生图模型有了显著提升。它可以根据文本描述生成照片般逼真的图像,支持多种图像风格,具有较高的生成质量和多样性。该模型采用创新的训练方式,扩展了词表、位置编码以支持长文本和中文,并在大规模双语数据集上进行训练,确保了其强大的中英文生成能力。
Goedel-Prover 是一款开源的自动化定理证明模型,专注于数学问题的形式化证明。
Goedel-Prover 是一款专注于自动化定理证明的开源大型语言模型。它通过将自然语言数学问题翻译为形式化语言(如 Lean 4),并生成形式化证明,显著提升了数学问题的自动化证明效率。该模型在 miniF2F 基准测试中达到了 57.6% 的成功率,超越了其他开源模型。其主要优点包括高性能、开源可扩展性以及对数学问题的深度理解能力。Goedel-Prover 旨在推动自动化定理证明技术的发展,并为数学研究和教育提供强大的工具支持。
构建数学基础模型的数学中心语料库
MathPile是一个包含约95亿个标记的数学中心语料库,从教科书(包括讲座笔记)、arXiv、维基百科、ProofWiki、StackExchange和网页中汲取数学内容,适用于K-12、大学、研究生水平和数学竞赛。MathPile的数据质量高,并且有着丰富的数据文档,以增强透明度和给用户灵活的使用数据的能力。在授权方面,MathPile遵循BY-NC-SA 4.0许可协议,同时计划很快发布一个商业可用版本。
开源视频生成模型,支持多种生成任务。
Wan2.1-FLF2V-14B 是一个开源的大规模视频生成模型,旨在推动视频生成领域的进步。该模型在多项基准测试中表现优异,支持消费者级 GPU,能够高效生成 480P 和 720P 的视频。它在文本到视频、图像到视频等多个任务中表现出色,具有强大的视觉文本生成能力,适用于各种实际应用场景。
7B规模的数学推理和科学发现模型
MathΣtral是一款为数学推理和科学发现而设计的7B规模的AI模型,拥有32k的上下文窗口,发布于Apache 2.0许可下。它在多步复杂逻辑推理的高级数学问题上展现出卓越的性能,是Mistral AI团队为科学界贡献的成果,旨在加强学术项目的支持。MathΣtral在STEM领域具有专业特长,其推理能力在同类规模模型中达到了行业标准基准的前沿水平。
开源视觉基础模型
InternVL通过将ViT模型扩展到60亿参数并与语言模型对齐,构建出目前最大的14B开源视觉基础模型,在视觉感知、跨模态检索、多模态对话等广泛任务上取得了32项state-of-the-art性能。
© 2025 AIbase 备案号:闽ICP备08105208号-14