需求人群:
"适合研究人员、开发者和企业,提供强大视觉语言模型,支持双语和高质量数据集用于实际场景。"
使用场景示例:
用于图像识别和描述生成
多语言环境下视觉指令调整
作为研究工具探索新应用
产品特色:
原生动态高分辨率,处理各种图像
双语支持,未来计划增加更多语言
质量控制,测试预训练和数据集
模型汤技术提高性能
支持自定义代码定制开发
高参数量提供强大性能
支持多种数据类型适应需求
使用教程:
1.安装必要库
2.克隆代码库
3.安装 WePOINTS
4.导入模型和工具
5.加载模型和处理器
6.准备输入数据
7.构建内容和消息
8.配置生成参数
9.调用模型进行聊天
10.打印响应结果
浏览量:20
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
PaliGemma 2是一个强大的视觉-语言模型,支持多种视觉语言任务。
PaliGemma 2是一个由Google开发的视觉-语言模型,继承了Gemma 2模型的能力,能够处理图像和文本输入并生成文本输出。该模型在多种视觉语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构和广泛的适用性。该模型适用于需要处理视觉和文本数据的各种应用场景,如社交媒体内容生成、智能客服等。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
给视觉语言模型赋予空间推理能力
SpatialVLM是一个由谷歌DeepMind开发的视觉语言模型,能够对空间关系进行理解和推理。它通过大规模合成数据的训练,获得了像人类一样直观地进行定量空间推理的能力。这不仅提高了其在空间VQA任务上的表现,还为链式空间推理和机器人控制等下游任务打开了新的可能。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
CogAgent-9B-20241220是基于视觉语言模型的GUI代理模型。
CogAgent-9B-20241220模型基于GLM-4V-9B双语开源VLM基础模型,通过数据收集和优化、多阶段训练以及策略改进,在GUI感知、推理预测准确性、动作空间完整性和任务泛化性方面取得了显著进步。该模型支持双语(中文和英文)交互,并能处理屏幕截图和语言输入。此版本已应用于ZhipuAI的GLM-PC产品中,旨在帮助研究人员和开发者推进基于视觉语言模型的GUI代理的研究和应用。
PaliGemma 2是一款强大的视觉-语言模型,支持多种语言的图像和文本处理任务。
PaliGemma 2是由Google开发的视觉-语言模型,它结合了SigLIP视觉模型和Gemma 2语言模型的能力,能够处理图像和文本输入,并生成相应的文本输出。该模型在多种视觉-语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构以及在多种任务上的优异性能。PaliGemma 2的开发背景是为了解决视觉和语言之间的复杂交互问题,帮助研究人员和开发者在相关领域取得突破。
通用型视觉语言模型
Qwen-VL 是阿里云推出的通用型视觉语言模型,具有强大的视觉理解和多模态推理能力。它支持零样本图像描述、视觉问答、文本理解、图像地标定位等任务,在多个视觉基准测试中达到或超过当前最优水平。该模型采用 Transformer 结构,以 7B 参数规模进行预训练,支持 448x448 分辨率,可以端到端处理图像与文本的多模态输入与输出。Qwen-VL 的优势包括通用性强、支持多语种、细粒度理解等。它可以广泛应用于图像理解、视觉问答、图像标注、图文生成等任务。
Helix 是一款用于通用人形机器人控制的视觉-语言-行动模型。
Helix 是一款创新的视觉-语言-行动模型,专为人形机器人的通用控制而设计。它通过将视觉感知、语言理解和动作控制相结合,解决了机器人在复杂环境中的多项长期挑战。Helix 的主要优点包括强大的泛化能力、高效的数据利用以及无需任务特定微调的单一神经网络架构。该模型旨在为家庭环境中的机器人提供即时行为生成能力,使其能够处理从未见过的物品。Helix 的出现标志着机器人技术在适应日常生活场景方面迈出了重要一步。
强大的开源视觉语言模型
CogVLM是一个强大的开源视觉语言模型。CogVLM-17B拥有100亿个视觉参数和70亿个语言参数。CogVLM-17B在10个经典的跨模态基准测试中取得了最先进的性能,包括NoCaps、Flicker30k字幕、RefCOCO、RefCOCO+、RefCOCOg、Visual7W、GQA、ScienceQA、VizWiz VQA和TDIUC,并在VQAv2、OKVQA、TextVQA、COCO字幕等方面排名第二,超过或与PaLI-X 55B相匹配。CogVLM还可以与您就图像进行对话。
8亿参数的多语言视觉语言模型,支持OCR、图像描述、视觉推理等功能
CohereForAI的Aya Vision 8B是一个8亿参数的多语言视觉语言模型,专为多种视觉语言任务优化,支持OCR、图像描述、视觉推理、总结、问答等功能。该模型基于C4AI Command R7B语言模型,结合SigLIP2视觉编码器,支持23种语言,具有16K上下文长度。其主要优点包括多语言支持、强大的视觉理解能力以及广泛的适用场景。该模型以开源权重形式发布,旨在推动全球研究社区的发展。根据CC-BY-NC许可协议,用户需遵守C4AI的可接受使用政策。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2-large是由微软开发的先进视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示来执行如图像描述、目标检测和分割等任务。它利用包含54亿注释的5.4亿图像的FLD-5B数据集,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
先进的视觉基础模型,支持多种视觉和视觉-语言任务。
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行如描述、目标检测和分割等任务。它利用包含54亿个注释的5.4亿张图像的FLD-5B数据集,精通多任务学习。模型的序列到序列架构使其在零样本和微调设置中都表现出色,证明其为有竞争力的视觉基础模型。
最新的视觉语言模型,支持多语言和多模态理解
Qwen2-VL-72B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最新的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,并可以集成到手机、机器人等设备中,进行基于视觉环境和文本指令的自动操作。除了英语和中文,Qwen2-VL现在还支持图像中不同语言文本的理解,包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
基于强化学习技术的视觉思考模型,理科测试行业领先
Kimi视觉思考模型k1是基于强化学习技术打造的AI模型,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。在数学、物理、化学等基础科学学科的基准能力测试中,k1模型的表现超过了全球标杆模型。k1模型的发布标志着AI在视觉理解和思考能力上的新突破,尤其在处理图像信息和基础科学问题上展现出色的表现。
高效开源的视觉语言模型
SmolVLM是一个小型但功能强大的视觉语言模型(VLM),拥有2B参数,以其较小的内存占用和高效性能在同类模型中处于领先地位。SmolVLM完全开源,包括所有模型检查点、VLM数据集、训练配方和工具均在Apache 2.0许可下发布。该模型适合在浏览器或边缘设备上进行本地部署,降低推理成本,并允许用户自定义。
开源视觉基础模型
InternVL通过将ViT模型扩展到60亿参数并与语言模型对齐,构建出目前最大的14B开源视觉基础模型,在视觉感知、跨模态检索、多模态对话等广泛任务上取得了32项state-of-the-art性能。
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
一款强大的小型视觉语言模型,无处不在
moondream是一个使用SigLIP、Phi-1.5和LLaVA训练数据集构建的16亿参数模型。由于使用了LLaVA数据集,权重受CC-BY-SA许可证保护。您可以在Huggingface Spaces上尝试使用它。该模型在VQAv2、GQA、VizWiz和TextVQA基准测试中表现如下:LLaVA-1.5(13.3B参数):80.0、63.3、53.6、61.3;LLaVA-1.5(7.3B参数):78.5、62.0、50.0、58.2;MC-LLaVA-3B(3B参数):64.2、49.6、24.9、38.6;LLaVA-Phi(3B参数):71.4、-、35.9、48.6;moondream1(1.6B参数):74.3、56.3、30.3、39.8。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
Google的尖端开放视觉语言模型
PaliGemma是Google发布的一款先进的视觉语言模型,它结合了图像编码器SigLIP和文本解码器Gemma-2B,能够理解图像和文本,并通过联合训练实现图像和文本的交互理解。该模型专为特定的下游任务设计,如图像描述、视觉问答、分割等,是研究和开发领域的重要工具。
新一代视觉语言模型,更清晰地看世界。
Qwen2-VL是一款基于Qwen2打造的最新一代视觉语言模型,具备多语言支持和强大的视觉理解能力,能够处理不同分辨率和长宽比的图片,理解长视频,并可集成到手机、机器人等设备中进行自动操作。它在多个视觉理解基准测试中取得全球领先的表现,尤其在文档理解方面有明显优势。
视觉语言模型高效文档检索工具
ColPali 是一种基于视觉语言模型的高效文档检索工具,它通过直接嵌入文档页面图像的方式来简化文档检索流程。ColPali 利用了最新的视觉语言模型技术,特别是 PaliGemma 模型,通过晚交互机制实现多向量检索,从而提高检索性能。这一技术不仅加快了索引速度,降低了查询延迟,而且在检索包含视觉元素的文档方面表现出色,例如图表、表格和图像。ColPali 的出现,为文档检索领域带来了一种新的“视觉空间检索”范式,有助于提高信息检索的效率和准确性。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
免费即时多语言网页翻译与双语查看工具
ReadWeb.ai是一个提供即时多语言网页翻译和双语查看服务的平台,旨在简化全球信息获取。用户可以一键将任何网页转换成多语言资源,提供独特的双语阅读体验,并简化内容分享,促进跨语言的全球连接和沟通。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
© 2025 AIbase 备案号:闽ICP备08105208号-14