需求人群:
"目标受众为需要部署和优化AI模型的企业IT团队,特别是那些寻求提高硬件效率、降低成本并保持数据隐私和安全的组织。Neural Magic的产品和技术能够帮助这些企业在各种基础设施上部署AI模型,同时保持高性能和可扩展性。"
使用场景示例:
企业使用nm-vllm在GPU上部署大型语言模型,提高了推理效率。
数据科学家利用DeepSparse在CPU上运行稀疏语言模型,大幅降低了成本。
教育机构采用SparseML工具包优化模型,提升了模型在边缘设备上的性能。
产品特色:
nm-vllm:企业级推理服务器,支持在GPU上部署开源大型语言模型。
DeepSparse:针对LLMs、计算机视觉和自然语言处理模型的稀疏感知推理服务器,可在CPU上运行。
SparseML:推理优化工具包,使用稀疏性和量化技术压缩大型语言模型。
SparseZoo:开源模型库,提供快速启动的开源模型。
Hugging Face集成:提供预优化的开源LLMs,实现更高效、更快速的推理。
模型优化技术:通过GPTQ和SparseGPT技术提高推理性能。
支持多种硬件架构:在广泛的GPU和CPU架构上进行深入的指令级细节优化。
使用教程:
1. 访问Neural Magic官网并注册账户。
2. 根据需求选择合适的产品,如nm-vllm或DeepSparse。
3. 下载并安装相应的软件或服务。
4. 按照提供的文档和指南配置AI模型。
5. 部署模型到选择的硬件架构上,如GPU或CPU。
6. 利用Neural Magic提供的工具和技术优化模型性能。
7. 监控和调整模型性能,确保最佳推理效果。
8. 根据需要联系Neural Magic的技术支持获取帮助。
浏览量:4
最新流量情况
月访问量
48.57k
平均访问时长
00:00:36
每次访问页数
1.56
跳出率
47.35%
流量来源
直接访问
44.77%
自然搜索
42.91%
邮件
0.09%
外链引荐
7.41%
社交媒体
4.29%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
法国
3.76%
印度
3.64%
韩国
5.90%
美国
48.87%
越南
4.33%
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
开源的去蒸馏FLUX模型
LibreFLUX是一个基于Apache 2.0许可的开源版本,提供了完整的T5上下文长度,使用注意力掩码,恢复了分类器自由引导,并去除了大部分FLUX美学微调/DPO。这意味着它比基础FLUX更不美观,但有潜力更容易地微调到任何新的分布。LibreFLUX的开发秉承开源软件的核心原则,即使用困难,比专有解决方案更慢、更笨拙,并且审美停留在21世纪初。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
开源AI模型,可微调、蒸馏、部署。
Llama 3.2是一系列大型语言模型(LLMs),预训练和微调在1B和3B大小的多语言文本模型,以及11B和90B大小的文本和图像输入输出文本的模型。这些模型可以用于开发高性能和高效率的应用。Llama 3.2的模型可以在移动设备和边缘设备上运行,支持多种编程语言,并且可以通过Llama Stack构建代理应用程序。
开源AI搜索引擎,提供网络搜索能力。
OpenPerPlex是一个开源AI搜索引擎,利用尖端技术提供网络搜索功能。它结合了语义分块、结果重排、谷歌搜索集成以及Groq作为推理引擎等技术,支持Llama 3 70B模型,以提高搜索的准确性和效率。
先进的AI检索器,用于RAG。
DenserRetriever是一个开源的AI检索模型,专为RAG(Retrieval-Augmented Generation)设计,利用社区协作的力量,采用XGBoost机器学习技术有效结合异构检索器,旨在满足大型企业的需求,并且易于部署,支持docker快速启动。它在MTEB检索基准测试中达到了最先进的准确性,并且Hugging Face排行榜上也有其身影。
谷歌下一代Gemma模型,提供突破性的性能和效率。
Gemma 2是下一代谷歌Gemma模型,拥有27亿参数,提供与Llama 3 70B相当的性能,但模型大小仅为其一半。它在NVIDIA的GPU上运行优化,或在Vertex AI上的单个TPU主机上高效运行,降低了部署成本,使更广泛的用户能够访问和使用。Gemma 2还提供了强大的调优工具链,支持云解决方案和社区工具,如Google Cloud和Axolotl,以及与Hugging Face和NVIDIA TensorRT-LLM的无缝合作伙伴集成。
一个多功能且强大的SDXL-ControlNet模型,适用于各种线条艺术的调节。
MistoLine是一个SDXL-ControlNet模型,能够适应任何类型的线条艺术输入,展示出高精度和出色的稳定性。它基于用户提供的线条艺术生成高质量图像,适用于手绘草图、不同ControlNet线条预处理器和模型生成的轮廓。MistoLine通过采用新颖的线条预处理算法(Anyline)和基于stabilityai/stable-diffusion-xl-base-1.0的Unet模型的重新训练,以及在大型模型训练工程中的创新,展现出在复杂场景下超越现有ControlNet模型的细节恢复、提示对齐和稳定性的优越性能。
开源的先进文本嵌入模型
Snowflake Arctic Embed是一系列基于Apache 2.0许可开源的文本嵌入模型,专为检索用例设计。这些模型在Massive Text Embedding Benchmark (MTEB)检索基准测试中提供了领先的检索性能,为组织在结合专有数据集与大型语言模型(LLMs)进行检索增强生成(RAG)或语义搜索服务时提供了新的优势。这些模型的尺寸从超小型(xs)到大型(l),具有不同的上下文窗口和参数数量,以满足不同企业的延迟、成本和检索性能需求。
AI社区共建未来,开源开放科学推进AI民主化
Hugging Face是一个AI社区平台,致力于通过开源和开放科学的方式来推进人工智能的发展和民主化。它为机器学习社区提供了协作模型、数据集和应用程序的环境。主要优势包括:1)协作平台,可无限托管和共享模型、数据集和应用程序。2)开源堆栈,加速ML开发流程。3)支持多模态(文本、图像、视频、音频、3D等)。4)建立ML作品集,在全球分享你的作品。5)付费计算和企业解决方案,提供优化的推理端点、GPU支持等。
在您的设备上运行和交互完整功能的开源LLM
Sanctum是一个桌面客户端应用程序,让您能够在本地设备上运行和交互完整功能的开源大型语言模型。通过Sanctum,您可以保证数据加密、安全,并且永远不会离开您的设备。它提供易于设置的解决方案,让您能够在Mac上立即运行大型语言模型而无需复杂的安装。您可以随时切换不同的开源模型以找到最适合您需求的模型,并且可以在安全和完全私密的环境中与PDF文件进行聊天、提问和总结。
泰勒AI帮助您的工程师训练模型。
Taylor AI是一个平台,可以使您的工程团队在不需要设置GPU和解密复杂库的情况下训练语言模型。它允许您按照自己的条件训练和部署开源语言模型,让您拥有完全的控制权和数据隐私。使用Taylor AI,您可以摆脱按标记付费的定价方式,自由地部署和与您的AI模型交互。它简化了训练和优化语言模型的过程,让您的团队可以专注于构建和迭代。Taylor AI始终跟上最新的开源模型,确保您可以使用最先进的语言模型进行训练。根据您独特的合规和安全标准安全地部署您的模型。
聊天AI的替代品
Golem是一个开源的ChatGPT UI替代品,具有美观易用的设计,保护用户数据隐私,可以分享对话,并且提供定制化体验。该产品基于LLM模型,功能强大,定价合理。适用于各种聊天场景。
Qwen2.5-Coder系列中的0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,显著提升了编码能力。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,编码能力与GPT-4o相当。此外,Qwen2.5-Coder还为实际应用如代码代理提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
开源AI开发者助手,提升开发效率。
OpenHands是由All Hands AI开发的开源AI软件工程师,旨在帮助开发者处理积压的工作,让他们能够专注于解决难题、创造性挑战和过度工程化他们的配置文件。该产品在SWE-bench验证问题集中解决了超过一半的问题,是首个得分超过50%的AI工程师。此外,来自十几个学术机构的顶级代码生成研究人员每天都在帮助改进它。OpenHands在GitHub上以MIT许可证开源,拥有35k星标和190+贡献者。它与AI安全专家如Invariant Labs合作,以平衡创新与安全。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
华盛顿邮报的AI问答产品
Ask The Post AI是华盛顿邮报推出的一款基于人工智能的产品,它允许读者就自2016年以来发布的所有报道提出问题。该产品利用生成式AI技术和对话格式,依托华盛顿邮报长期以来基于事实、深入报道的新闻传统,以新的方式取悦并通知读者。Ask The Post AI通过机器学习团队对Climate Answers工具的数据进行提炼,优化了如何检索和匹配自2016年以来新闻室发布的所有报道中与用户查询相关的相关文章。
开源、自托管、AI驱动的应用构建器。
Srcbook是一个开源、自托管的AI驱动应用构建器,它允许用户快速构建和部署各种应用程序。产品背景信息显示,Srcbook旨在提供一个平台,让开发者和非技术用户都能够轻松地构建应用程序,从而提高生产力和创新能力。它支持多种应用场景,如项目管理工具、音乐发现页面、技术文档网站等。Srcbook的主要优点包括开源性、灵活性和易用性,用户可以根据自己的需求定制和扩展功能。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
开源机器人模拟平台,用于生成无限机器人数据和泛化AI。
ManiSkill是一个领先的开源平台,专注于机器人模拟、无限机器人数据生成和泛化机器人AI。由HillBot.ai领导,该平台支持通过状态和/或视觉输入快速训练机器人,与其它平台相比,ManiSkill/SAPIEN实现了10-100倍的视觉数据收集速度。它支持在GPU上并行模拟和渲染RGB-D,速度高达30,000+FPS。ManiSkill提供了40多种技能/任务和2000多个对象的预构建任务,拥有数百万帧的演示和密集的奖励函数,用户无需自己收集资产或设计任务,可以专注于算法开发。此外,它还支持在每个并行环境中同时模拟不同的对象和关节,训练泛化机器人策略/AI的时间从天缩短到分钟。ManiSkill易于使用,可以通过pip安装,并提供简单灵活的GUI以及所有功能的广泛文档。
开发者可使用的Grok系列基础模型API
xAI API提供了对Grok系列基础模型的程序化访问,支持文本和图像输入,具有128,000个token的上下文长度,并支持函数调用和系统提示。该API与OpenAI和Anthropic的API完全兼容,简化了迁移过程。产品背景信息显示,xAI正在进行公共Beta测试,直至2024年底,期间每位用户每月可获得25美元的免费API积分。
AI驱动的电子元件分类器,智能组件管理的终极解决方案。
Vanguard-s/Electronic-Component-Sorter是一个利用机器学习和人工智能自动化识别和分类电子元件的项目。该项目通过深度学习模型,能够将电子元件分为电阻、电容、LED、晶体管等七大类,并通过OCR技术进一步获取元件的详细信息。它的重要性在于减少人工分类错误,提高效率,确保安全性,并帮助视觉障碍人士更便捷地识别电子元件。
模块化仿人机器人,具有高自由度
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目包括模型推理、平台驱动和软件仿真等多个功能模块。AimRT框架是一个用于机器人应用开发的开源框架,它提供了一套完整的工具和库,以支持机器人的感知、决策和行动。Agibot X1项目的重要性在于它为机器人研究和教育提供了一个高度可定制和可扩展的平台。
利用区块链释放你的AI潜能
AIxBlock是一个集成平台,使用去中心化的计算资源快速产品化AI模型,具有灵活性和完全的隐私控制。它通过区块链技术,为AI项目提供去中心化的超级计算能力,降低计算成本高达90%,并通过点对点交易减少成本,无需交易费用。AIxBlock还强调数据的隐私和安全性,提供在本地基础设施上运行的平台选项,确保数据和模型的隐私。此外,它还提供了一个无代码的AI生态系统,从概念到商业化,支持整个AI开发旅程。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
强大的图像生成模型
Stable Diffusion 3.5是Stability AI推出的一款图像生成模型,具有多种变体,包括Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo。这些模型可高度定制,能在消费级硬件上运行,并且根据Stability AI社区许可协议,可以免费用于商业和非商业用途。该模型的发布体现了Stability AI致力于让视觉媒体变革的工具更易于获取、更前沿、更自由的使命。
IBM Granite 3.0模型,高效能AI语言模型
IBM Granite 3.0模型是一系列高性能的AI语言模型,由IBM开发,并通过Ollama平台提供。这些模型在超过12万亿个token上进行训练,展示了在性能和速度上的显著提升。它们支持基于工具的用例,包括检索增强生成(RAG)、代码生成、翻译和错误修复。IBM Granite 3.0模型包括密集型模型和Mixture of Expert(MoE)模型,后者专为低延迟使用而设计,适合在设备上应用或需要即时推理的场景。
© 2024 AIbase 备案号:闽ICP备08105208号-14