需求人群:
"自然语言处理"
使用场景示例:
使用Mixtral-8x22B模型生成段落级别的文本,丰富文章内容
利用Mixtral-8x22B模型进行问答系统的开发,提高回答质量
将Mixtral-8x22B模型应用于多语言机器翻译任务,提升翻译准确性
产品特色:
文本生成
问答
翻译
浏览量:128
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
一个基于稀疏专家模型的大型语言模型
Mixtral-8x22B是一个预训练的生成式稀疏专家语言模型。它由Mistral AI团队开发,旨在推进人工智能的开放发展。该模型具有141B个参数,支持多种优化部署方式,如半精度、量化等,以满足不同的硬件和应用场景需求。Mixtral-8x22B可以用于文本生成、问答、翻译等自然语言处理任务。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
基于熵的采样技术,优化模型输出的多样性和准确性
Entropy-based sampling 是一种基于熵理论的采样技术,用于提升语言模型在生成文本时的多样性和准确性。该技术通过计算概率分布的熵和方差熵来评估模型的不确定性,从而在模型可能陷入局部最优或过度自信时调整采样策略。这种方法有助于避免模型输出的单调重复,同时在模型不确定性较高时增加输出的多样性。
AMD训练的高性能语言模型
AMD-Llama-135m是一个基于LLaMA2模型架构训练的语言模型,能够在AMD MI250 GPU上流畅加载使用。该模型支持生成文本和代码,适用于多种自然语言处理任务。
高效能的第三代MiniCPM系列模型
MiniCPM3-4B是MiniCPM系列的第三代产品,整体性能超越了Phi-3.5-mini-Instruct和GPT-3.5-Turbo-0125,与许多近期的7B至9B模型相当。与前两代相比,MiniCPM3-4B具有更强大的多功能性,支持函数调用和代码解释器,使其能够更广泛地应用于各种场景。此外,MiniCPM3-4B拥有32k的上下文窗口,配合LLMxMapReduce技术,理论上可以处理无限上下文,而无需大量内存。
7.8亿参数的双语生成模型
EXAONE-3.0-7.8B-Instruct是LG AI Research开发的一款具有7.8亿参数的双语(英语和韩语)预训练生成模型。模型通过8T的精选token进行预训练,并经过监督式微调和直接偏好优化进行后训练,展现出与同类大小的开放模型相比极具竞争力的基准性能。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
轻量级大语言模型,专注于文本生成。
Index-1.9B-Pure是Index系列模型中的轻量版本,专为文本生成而设计。它在2.8T的中英文语料上进行了预训练,与同等级模型相比,在多个评测基准上表现领先。该模型特别过滤了所有指令相关数据,以验证指令对benchmark的影响,适用于需要高质量文本生成的领域。
一种高效的遮蔽扩散语言模型。
Masked Diffusion Language Models (MDLM) 是一种新型的语言模型,它通过遮蔽和扩散机制来生成高质量的文本数据。MDLM 通过改进的训练方法和简化的目标函数,提高了遮蔽扩散模型的性能,使其在语言建模基准测试中达到了新的最佳状态,并接近自回归模型的困惑度。MDLM 的主要优点包括高效的采样器、支持生成任意长度的文本,以及在长程依赖和可控生成方面的优势。
Aloe是一款专为医疗领域设计的高性能语言模型,提供先进的文本生成和对话能力。
Aloe是由HPAI开发的一款医疗领域的语言模型,基于Meta Llama 3 8B模型进行优化。它通过模型融合和先进的提示策略,达到了与其规模相匹配的最先进水平。Aloe在伦理和事实性指标上得分较高,这得益于红队和对齐工作的结合。该模型提供了医疗特定的风险评估,以促进这些系统的安全使用和部署。
Gemma 2B模型,支持10M序列长度,优化内存使用,适用于大规模语言模型应用。
Gemma 2B - 10M Context是一个大规模的语言模型,它通过创新的注意力机制优化,能够在内存使用低于32GB的情况下处理长达10M的序列。该模型采用了循环局部注意力技术,灵感来源于Transformer-XL论文,是处理大规模语言任务的强大工具。
在浏览器中尝试Cleanlab的可信任语言模型(TLM)
TLM Playground是Cleanlab的一个工具,用于在浏览器中使用可信任语言模型(TLM)。它提供了一个交互式界面,用户可以输入文本并获得模型生成的响应。TLM是一种基于深度学习的语言模型,它可以用于生成自然语言文本,例如回答问题、翻译、文本摘要等。
一款高效经济的语言模型,具有强大的专家混合特性。
DeepSeek-V2是一个由236B参数构成的混合专家(MoE)语言模型,它在保持经济训练和高效推理的同时,激活每个token的21B参数。与前代DeepSeek 67B相比,DeepSeek-V2在性能上更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,并提升了最大生成吞吐量至5.76倍。该模型在8.1万亿token的高质量语料库上进行了预训练,并通过监督式微调(SFT)和强化学习(RL)进一步优化,使其在标准基准测试和开放式生成评估中表现出色。
谷歌开源的大型语言模型,能够生成高质量的文本内容
RecurrentGemma是谷歌开发的一系列开放语言模型,采用创新的循环架构设计,在文本生成任务上性能优异,包括问答、摘要和推理等。与Gemma模型相比,RecurrentGemma所需的内存更少,生成长序列的推理速度更快。该模型提供了预训练和针对指令的微调版本,可广泛应用于内容创作、对话AI等场景。
一款12.1B参数的解码型语言模型
Stable LM 2 12B是一种12.1十亿参数的解码器式语言模型,经过2万亿token的多语种和代码数据集预训练。该模型可用作基础模型进行下游任务的微调,但在使用前需要评估和微调以确保安全可靠的性能。该模型可能包含不当内容,建议使用时谨慎评估,不要用于可能会给他人造成伤害的应用。
谷歌推出的开源预训练语言模型
Gemma-2b是谷歌推出的开源预训练语言模型系列,提供了多个不同规模的变体。它可以生成高质量的文本,广泛应用于问答、摘要、推理等领域。相比其他同类模型,它模型规模较小,可以部署在不同的硬件环境中。Gemma系列追求安全、高效的人工智能技术,使更多研究者和开发者可以接触前沿的语言模型技术。
稳定代码3B - 用于文本生成的预训练语言模型
Stable Code 3B是一个拥有27亿参数的仅解码器语言模型,预训练于1300亿个多样的文本和代码数据标记。Stable Code 3B在18种编程语言上进行了训练,并在使用BigCode的评估工具进行测试时,在多种编程语言上展现出与同等规模模型相比的最先进性能。它支持长上下文,使用了长度达16384的序列进行训练,并具有填充中间功能(FIM)。用户可以通过Hugging Face网站上的代码片段开始使用Stable Code 3B生成文本。该模型由Stability AI开发,基于GPT-NeoX库,可用于英文和编程语言。
高效多模态大型语言模型
TinyGPT-V 是一种高效的多模态大型语言模型,通过使用小型骨干网络来实现。它具有强大的语言理解和生成能力,适用于各种自然语言处理任务。TinyGPT-V 采用 Phi-2 作为预训练模型,具备出色的性能和效率。
TinyLlama项目旨在在3万亿令牌上预训练一个1.1B Llama模型。通过一些适当的优化,我们可以在“仅”90天内使用16个A100-40G GPU完成。训练已于2023-09-01开始。
TinyLlama项目旨在在3万亿令牌上预训练一个1.1B Llama模型。通过一些适当的优化,我们可以在“仅”90天内使用16个A100-40G GPU完成。训练已于2023-09-01开始。我们采用了与Llama 2完全相同的架构和分词器。这意味着TinyLlama可以在许多建立在Llama基础上的开源项目中使用。此外,TinyLlama只有1.1B个参数,紧凑性使其能够满足许多对计算和内存占用有限的应用需求。
基于大型语言模型的文本生成工具
TextSynth是一个基于大型语言模型的文本生成工具。它使用Falcon 7B和Llama2 7B等先进的语言模型,可以帮助用户完成文本的自动补全和生成。无论是写作、聊天还是翻译,TextSynth都能提供准确、流畅的文本输出。它支持多种语言和领域,具有强大的功能和灵活的参数设置。TextSynth是提高生产力和创造力的理想工具。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
开源的32亿参数代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int4是基于Qwen2.5的代码生成大型语言模型,具有32.5亿参数量,支持长文本处理,最大支持128K tokens。该模型在代码生成、代码推理和代码修复方面有显著提升,是当前开源代码语言模型中的佼佼者。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的指令调优0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,通过扩展训练令牌到5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。该模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列技术报告
Qwen2.5-Coder系列是基于Qwen2.5架构的代码特定模型,包括Qwen2.5-Coder-1.5B和Qwen2.5-Coder-7B两个模型。这些模型在超过5.5万亿个token的大规模语料库上继续预训练,并通过精细的数据清洗、可扩展的合成数据生成和平衡的数据混合,展现出令人印象深刻的代码生成能力,同时保持了通用性。Qwen2.5-Coder在包括代码生成、补全、推理和修复在内的多种代码相关任务上取得了超过10个基准测试的最新性能,并且一致性地超越了同等大小的更大模型。该系列的发布不仅推动了代码智能研究的边界,而且通过其许可授权,鼓励开发者在现实世界的应用中更广泛地采用。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
© 2024 AIbase 备案号:闽ICP备08105208号-14