需求人群:
"TinyLlama可用于聊天模型的微调和文本生成。"
使用场景示例:
https://github.com/jzhang38/TinyLlama
https://huggingface.co/docs/transformers/main/en/chat_templating
https://github.com/huggingface/transformers.git
产品特色:
文本生成
Transformers
安全张量
浏览量:101
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
谷歌推出的开源预训练语言模型
Gemma-2b是谷歌推出的开源预训练语言模型系列,提供了多个不同规模的变体。它可以生成高质量的文本,广泛应用于问答、摘要、推理等领域。相比其他同类模型,它模型规模较小,可以部署在不同的硬件环境中。Gemma系列追求安全、高效的人工智能技术,使更多研究者和开发者可以接触前沿的语言模型技术。
稳定代码3B - 用于文本生成的预训练语言模型
Stable Code 3B是一个拥有27亿参数的仅解码器语言模型,预训练于1300亿个多样的文本和代码数据标记。Stable Code 3B在18种编程语言上进行了训练,并在使用BigCode的评估工具进行测试时,在多种编程语言上展现出与同等规模模型相比的最先进性能。它支持长上下文,使用了长度达16384的序列进行训练,并具有填充中间功能(FIM)。用户可以通过Hugging Face网站上的代码片段开始使用Stable Code 3B生成文本。该模型由Stability AI开发,基于GPT-NeoX库,可用于英文和编程语言。
轻量级大语言模型,专注于文本生成。
Index-1.9B-Pure是Index系列模型中的轻量版本,专为文本生成而设计。它在2.8T的中英文语料上进行了预训练,与同等级模型相比,在多个评测基准上表现领先。该模型特别过滤了所有指令相关数据,以验证指令对benchmark的影响,适用于需要高质量文本生成的领域。
文档智能的视觉引导生成文本布局预训练模型
ViTLP是一个视觉引导的生成文本布局预训练模型,旨在提高文档智能处理的效率和准确性。该模型结合了OCR文本定位和识别功能,能够在文档图像上进行快速准确的文本检测和识别。ViTLP模型的预训练版本ViTLP-medium(380M参数)在计算资源和预训练数据集规模的限制下,提供了一个平衡的解决方案,既保证了模型的性能,又优化了推理速度和内存使用。ViTLP的推理速度在Nvidia 4090上处理一页文档图像通常在5到10秒内,与大多数OCR引擎相比具有竞争力。
TinyLlama项目旨在在3万亿令牌上预训练一个1.1B Llama模型。通过一些适当的优化,我们可以在“仅”90天内使用16个A100-40G GPU完成。训练已于2023-09-01开始。
TinyLlama项目旨在在3万亿令牌上预训练一个1.1B Llama模型。通过一些适当的优化,我们可以在“仅”90天内使用16个A100-40G GPU完成。训练已于2023-09-01开始。我们采用了与Llama 2完全相同的架构和分词器。这意味着TinyLlama可以在许多建立在Llama基础上的开源项目中使用。此外,TinyLlama只有1.1B个参数,紧凑性使其能够满足许多对计算和内存占用有限的应用需求。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
大型语言模型,高效文本生成。
InternLM2.5-7B-Chat GGUF是一个大型语言模型,专为文本生成而设计。它基于开源框架llama.cpp,支持多种硬件平台的本地和云推理。该模型具有7.74亿参数,采用先进的架构设计,能够提供高质量的文本生成服务。
先进的文本生成模型,支持多样化任务
Llama-3.1-Tulu-3-8B-SFT是Tülu3模型家族中的一员,这是一个领先的指令遵循模型家族,提供完全开源的数据、代码和配方,旨在为现代后训练技术提供全面的指南。该模型不仅在聊天任务上表现出色,还在MATH、GSM8K和IFEval等多样化任务上展现了卓越的性能。
基于 Transformer 的预训练语言模型系列
Qwen1.5 是基于 Transformer 架构的解码器语言模型系列,包括不同规模的模型。具有 SwiGLU 激活、注意力 QKV 偏置、组查询注意力等特性。支持多种自然语言和代码。推荐进行后续训练,如 SFT、RLHF 等。定价免费。
开源的中英双语预训练语言模型
LingoWhale-8B是一个开源的大规模中英双语预训练语言模型,具有强大的自然语言理解和生成能力。它通过在海量高质量中英文数据上进行预训练,可以完成长文本的理解和多轮交互。该模型采用Transformer架构,参数量达80亿。它在多个中文和英文公开基准测试上都取得了领先的效果。LingoWhale-8B完全开放给学术研究使用,个人开发者可以免费用于商业用途。该模型可以广泛应用于聊天机器人、知识问答、文本生成等领域。
一个基于稀疏专家模型的大型语言模型
Mixtral-8x22B是一个预训练的生成式稀疏专家语言模型。它由Mistral AI团队开发,旨在推进人工智能的开放发展。该模型具有141B个参数,支持多种优化部署方式,如半精度、量化等,以满足不同的硬件和应用场景需求。Mixtral-8x22B可以用于文本生成、问答、翻译等自然语言处理任务。
基于大型语言模型的文本生成工具
TextSynth是一个基于大型语言模型的文本生成工具。它使用Falcon 7B和Llama2 7B等先进的语言模型,可以帮助用户完成文本的自动补全和生成。无论是写作、聊天还是翻译,TextSynth都能提供准确、流畅的文本输出。它支持多种语言和领域,具有强大的功能和灵活的参数设置。TextSynth是提高生产力和创造力的理想工具。
7.8亿参数的双语生成模型
EXAONE-3.0-7.8B-Instruct是LG AI Research开发的一款具有7.8亿参数的双语(英语和韩语)预训练生成模型。模型通过8T的精选token进行预训练,并经过监督式微调和直接偏好优化进行后训练,展现出与同类大小的开放模型相比极具竞争力的基准性能。
大规模自回归图像模型预训练
这篇论文介绍了AIM,这是一组使用自回归目标进行预训练的视觉模型。这些模型受其文本对应物,即大型语言模型(LLMs)的启发,并表现出类似的扩展特性。具体来说,我们强调了两个关键发现:(1)视觉特征的性能随着模型容量和数据量的增加而提高,(2)目标函数的价值与模型在下游任务上的性能相关。我们通过在20亿张图像上对70亿参数的AIM进行预训练,实现了在ImageNet-1k上使用冻结主干达到84.0%的准确率。有趣的是,即使在这个规模上,我们观察到性能没有饱和的迹象,这表明AIM可能代表了训练大规模视觉模型的新前沿。AIM的预训练类似于LLMs的预训练,并不需要任何图像特定的策略来稳定大规模训练。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
多语言预训练语言模型
「书生·浦语2.0」InternLM2是一个面向中文和英文的大型多语言预训练语言模型。它具有语言理解、自然语言生成、多模式推理、代码理解等强大的能力。模型采用Transformer架构并进行海量数据的预训练,在长文本理解、对话、数学运算等多个方向上都达到了业界领先水平。该系列模型包含多种规模,用户可以选择合适的模型进行下游任务微调或构建聊天机器人等应用。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
新一代多语言预训练模型,性能卓越。
Qwen2是一系列经过预训练和指令调整的模型,支持多达27种语言,包括英语和中文。这些模型在多个基准测试中表现出色,特别是在编码和数学方面有显著提升。Qwen2模型的上下文长度支持高达128K个token,适用于处理长文本任务。此外,Qwen2-72B-Instruct模型在安全性方面与GPT-4相当,显著优于Mistral-8x22B模型。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
一个基于文本生成图像的预训练模型,具有80亿参数和Apache 2.0开源许可。
Flex.1-alpha 是一个强大的文本到图像生成模型,基于80亿参数的修正流变换器架构。它继承了FLUX.1-schnell的特性,并通过训练指导嵌入器,使其无需CFG即可生成图像。该模型支持微调,并且具有开放源代码许可(Apache 2.0),适合在多种推理引擎中使用,如Diffusers和ComfyUI。其主要优点包括高效生成高质量图像、灵活的微调能力和开源社区支持。开发背景是为了解决图像生成模型的压缩和优化问题,并通过持续训练提升模型性能。
基于语言模型架构的预训练时间序列预测模型
Chronos是一系列基于语言模型架构的预训练时间序列预测模型。时间序列通过缩放和量化转换为一系列标记,然后使用交叉熵损失训练语言模型。训练完成后,通过给定历史上下文采样多个未来轨迹,获得概率性预测。Chronos模型已经在大量公开可用的时间序列数据和使用高斯过程生成的合成数据上进行了训练。
多功能文本生成工具
文心大模型包含文本生成、文生图、智能对话等技能,可用于文化传媒、艺术创作、教育科研、金融保险、医疗健康等多个应用场景。该产品具有高效、智能、多样化等优势,定价灵活,适用于个人用户和企业用户。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
文本生成领域的先进模型
H2O Danube3 是由 h2oai 公司开发的一系列文本生成模型,这些模型专注于提供高质量的文本生成服务,广泛应用于聊天机器人、内容创作等领域。它们具备强大的语言理解和生成能力,能够根据给定的上下文生成连贯、准确的文本。
70亿参数的量化文本生成模型
Llama-Lynx-70b-4bit-Quantized是由PatronusAI开发的一个大型文本生成模型,具有70亿参数,并且经过4位量化处理,以优化模型大小和推理速度。该模型基于Hugging Face的Transformers库构建,支持多种语言,特别是在对话生成和文本生成领域表现出色。它的重要性在于能够在保持较高性能的同时减少模型的存储和计算需求,使得在资源受限的环境中也能部署强大的AI模型。
强大的视频 - 文本生成模型
Twelve Labs 推出的 Pegasus-1 是一款强大的视频 - 文本生成模型,支持生成视频的标题、摘要和自定义文本输出。该模型具有 80B 个参数,相对于先前的视频 - 语言模型,Pegasus-1 在 MSR-VTT 数据集上的表现提升了 61%,在 Video Descriptions 数据集上提升了 47%。用户可以通过 API 调用 Pegasus-1 模型生成视频的文本输出,包括标题、摘要、章节和自定义格式。Pegasus-1 模型充分考虑了视频的视觉、音频和语音信息,相比于现有解决方案,其生成的文本更加全面和准确。
先进的文本生成模型
OLMo-2-1124-13B-SFT是由Allen AI研究所开发的一个大型语言模型,经过在特定数据集上的监督微调,旨在提高在多种任务上的表现,包括聊天、数学问题解答、文本生成等。该模型基于Transformers库和PyTorch框架,支持英文,拥有Apache 2.0的开源许可证,适用于研究和教育用途。
© 2025 AIbase 备案号:闽ICP备08105208号-14