需求人群:
"目标受众包括开发者、数据科学家和业务分析师,他们需要从大量非结构化文档中提取有用信息,并将其转换为可用于分析和决策的结构化数据。Knowledge Table 提供了一个直观的界面和强大的后端支持,使得这一过程变得简单快捷。"
使用场景示例:
合同管理:提取合同中的关键信息,如参与方名称、生效日期和续签日期。
财务报告:从年报或盈利声明中提取财务数据。
研究提取:针对一系列研究报告提出关键问题并提取信息。
元数据生成:通过运行针对性问题对文件进行分类和标记,生成关于文档和文件的信息。
产品特色:
使用自然语言查询从非结构化文档中提取结构化数据。
创建表格和图表等结构化知识表示。
自定义提取规则以确保数据质量。
控制提取数据的输出格式。
根据元数据或提取的数据过滤文档。
将提取的数据导出为CSV或图三元组。
引用之前列中的数据进行链式提取。
集成Unstructured API以增强文档处理能力。
使用教程:
1. 访问Knowledge Table的GitHub页面并克隆代码库。
2. 安装必要的依赖项,包括Docker和Docker Compose。
3. 根据需要运行Docker容器或本地环境。
4. 设置环境变量,如OpenAI API密钥。
5. 定义提取规则和格式化选项。
6. 上传非结构化文档并创建问题以指导数据提取。
7. 根据问题和规则处理数据并获取结构化输出。
8. 根据需要调整问题或规则设置以优化提取结果。
浏览量:127
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
基于知识图谱的智能问答系统。
Fact Finder 是一个开源的智能问答系统,它使用语言模型和知识图谱来生成自然语言回答和提供证据。该系统通过调用语言模型生成Cypher查询,查询知识图谱以获取答案,并使用另一个语言模型调用生成最终的自然语言回答。Fact Finder 的主要优点包括能够提供透明性,允许用户查看查询和证据,以及通过可视化子图提供直观的证据。
利用知识图谱和文档网络增强语言模型性能
Knowledge Graph RAG 是一个开源的Python库,它通过创建知识图谱和文档网络来增强大型语言模型(LLM)的性能。这个库允许用户通过图谱结构来搜索和关联信息,从而为语言模型提供更丰富的上下文。它主要应用于自然语言处理领域,尤其是在文档检索和信息抽取任务中。
利用大型语言模型增量构建知识图谱
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
基于知识图谱的检索增强生成框架,赋能大型语言模型处理知识密集型任务
KG-RAG是一个任务无关的框架,它结合知识图谱的显性知识和大型语言模型的隐性知识。这里,我们利用一个巨大的生物医学知识图谱SPOKE作为生物医学上下文的提供者。KG-RAG的主要特征是它从SPOKE知识图谱中提取“与提示相关的上下文”,这被定义为响应用户提示所需的最小上下文。
从任何文本中提取知识图谱的人工智能工具。
kg-gen 是一个基于人工智能的工具,能够从普通文本中提取知识图谱。它支持处理小到单句话、大到长篇文档的文本输入,并且可以处理对话格式的消息。该工具利用先进的语言模型和结构化输出技术,能够帮助用户快速构建知识图谱,适用于自然语言处理、知识管理以及模型训练等领域。kg-gen 提供了灵活的接口和多种功能,旨在简化知识图谱的生成过程,提高效率。
基于人工智能生成及查询不断扩展的知识图谱的概念证明
MindGraph是一个开源、API优先的基于图形的项目原型,旨在实现自然语言交互(输入和输出)。它可作为构建和定制自己的CRM解决方案的模板,重点是易于集成和可扩展性。主要功能包括:实体管理、集成触发器、搜索功能、人工智能整备。它采用模块化架构,通过集成管理器动态注册和执行各种集成函数,使其具有无缝集成人工智能功能的能力。它支持灵活的数据库集成,包括内存数据库和云数据库NexusDB。再加上基于模式的知识图谱创建,使其能够自动从自然语言输入中生成结构化数据。
开源工具,简化从非结构化文档中提取和探索结构化数据。
Knowledge Table 是一个开源工具包,旨在简化从非结构化文档中提取和探索结构化数据的过程。它通过自然语言查询界面,使用户能够创建结构化的知识表示,如表格和图表。该工具包具有可定制的提取规则、精细调整的格式化选项,并通过UI显示的数据溯源,适应多种用例。它的目标是为业务用户提供熟悉的电子表格界面,同时为开发者提供灵活且高度可配置的后端,确保与现有RAG工作流程的无缝集成。
多模态知识图谱补全工具
MyGO是一个用于多模态知识图谱补全的工具,它通过将离散模态信息作为细粒度的标记来处理,以提高补全的准确性。MyGO利用transformers库对文本标记进行嵌入,进而在多模态数据集上进行训练和评估。它支持自定义数据集,并且提供了训练脚本以复现实验结果。
从文本中提取知识图谱三元组的管道工具
Graphusion是一个用于从文本中提取知识图谱三元组的管道工具。它通过一系列步骤,包括概念提取、候选三元组提取和三元组融合,来构建知识图谱。这个工具的重要性在于它能够帮助研究人员和开发者自动化地从大量文本数据中提取结构化信息,进而支持知识管理和数据科学项目。Graphusion的主要优点包括其自动化处理能力、对不同数据集的适应性以及灵活的配置选项。产品背景信息显示,Graphusion是由tdurieux开发的,可以在GitHub上找到相关代码和文档。目前,该工具是免费的,但具体的定价策略可能会根据开发者的更新和维护情况而变化。
构建知识图谱的Neo4j应用
llm-graph-builder是一个利用大型语言模型(如OpenAI、Gemini等)从非结构化数据(PDF、DOCS、TXT、YouTube视频、网页等)中提取节点、关系及其属性,并使用Langchain框架创建结构化知识图谱的应用程序。它支持从本地机器、GCS或S3存储桶或网络资源上传文件,选择LLM模型并生成知识图谱。
数据库查询的自然语言处理基准测试
TAG-Bench是一个用于评估和研究自然语言处理模型在回答数据库查询方面性能的基准测试。它基于BIRD Text2SQL基准测试构建,并通过增加对世界知识或超越数据库中明确信息的语义推理要求,提高了查询的复杂性。TAG-Bench旨在推动AI和数据库技术的融合,通过模拟真实的数据库查询场景,为研究者提供了一个挑战现有模型的平台。
自然语言处理模型
LLaMA Pro 是一种用于大规模自然语言处理的模型。通过使用 Transformer 模块的扩展,该模型可以在不遗忘旧知识的情况下,高效而有效地利用新语料库来提升模型的知识。LLaMA Pro 具有出色的性能,在通用任务、编程和数学方面都表现出色。它是基于 LLaMA2-7B 进行初始化的通用模型。LLaMA Pro 和其指导类模型(LLaMA Pro-Instruct)在各种基准测试中均取得了先进的性能,展示了在智能代理中进行推理和处理各种任务的巨大潜力。该模型为将自然语言和编程语言进行整合提供了宝贵的见解,为在各种环境中有效运作的先进语言代理的开发奠定了坚实的基础。
KET-RAG 是一个结合知识图谱的检索增强型生成框架,用于高效文档索引和答案生成。
KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应用场景。KET-RAG 基于 Python 开发,支持灵活的配置和扩展,适用于需要高效知识检索和生成的开发人员和研究人员。
自然语言文本转表格工具
Textraction是一款自然语言文本转表格工具,能够将文本快速转换为表格,支持多语言,提供无限可能的实体提取,具有快速易用、自然语言描述等优势。定价根据使用量计费,适用于房地产、简历、客户支持、金融、产品列表、采购订单、教程等场景。
利用GPT-3模型将非结构化文本数据转换为结构化知识图谱表示
KnowledgeGraph GPT项目旨在利用OpenAI的GPT-3模型,将非结构化文本数据转换为结构化知识图谱表示。该产品具有强大的功能和优势,定价合理,定位于满足用户对文本数据结构化处理的需求。
开源知识图谱工作室,助力构建动态图谱AI工作流
WhyHow Knowledge Graph Studio是一个开源平台,旨在简化创建和管理RAG-native知识图谱的过程。该平台提供基于规则的实体解析、模块化图构建、灵活的数据摄取以及API优先设计,并支持SDK。它基于NoSQL数据库构建,提供灵活、可扩展的存储层,使复杂关系的数据检索和遍历变得容易。该平台适用于处理结构化和非结构化数据,构建探索性图谱或高度模式化约束图谱,旨在实现规模化和灵活性,适用于实验和大规模使用。
开源知识图谱构建模型,成本低廉
Triplex是一个创新的开源模型,能够将大量非结构化数据转换为结构化数据,其在知识图谱构建方面的表现超越了gpt-4o,且成本仅为其十分之一。它通过高效的将非结构化文本转换为知识图谱的构建基础——语义三元组,大幅降低了知识图谱的生成成本。
将复杂数据转化为清晰的可操作知识图谱,加速研究发现。
Minicule是一个用于EBV研究和科学发现的平台。它可以帮助用户将复杂数据转化为清晰的知识图谱,加速研究发现过程。该产品为生命科学领域的研究者提供了强大的数据可视化和协作工具。
AI自然语言处理模型
Powerups AI是一款基于人工智能技术的自然语言处理模型,具有极高的语言理解和生成能力。该模型可以用于文本生成、语言翻译、对话生成等多个领域,可以帮助用户快速生成高质量的文本内容,提高工作效率。
高性能知识图谱数据库与推理引擎
RDFox 是由牛津大学计算机科学系的三位教授基于数十年知识表示与推理(KRR)研究开发的规则驱动人工智能技术。其独特之处在于:1. 强大的AI推理能力:RDFox 能够像人类一样从数据中创建知识,基于事实进行推理,确保结果的准确性和可解释性。2. 高性能:作为唯一在内存中运行的知识图谱,RDFox 在基准测试中的表现远超其他图技术,能够处理数十亿三元组的复杂数据存储。3. 可扩展部署:RDFox 具有极高的效率和优化的占用空间,可以嵌入边缘和移动设备,作为 AI 应用的大脑独立运行。4. 企业级特性:包括高性能、高可用性、访问控制、可解释性、人类般的推理能力、数据导入和 API 支持等。5. 增量推理:RDFox 的推理功能在数据添加或删除时即时更新,不影响性能,无需重新加载。
由知识图谱引擎驱动的创新Agent框架
muAgent是一个创新的Agent框架,由知识图谱引擎驱动,支持多Agent编排和协同技术。它利用LLM+EKG(Eventic Knowledge Graph 行业知识承载)技术,结合FunctionCall、CodeInterpreter等,通过画布式拖拽和轻文字编写,实现复杂SOP流程的自动化。muAgent兼容市面上各类Agent框架,具备复杂推理、在线协同、人工交互、知识即用等核心功能。该框架已在蚂蚁集团多个复杂DevOps场景中得到验证。
使用知识探索API通过自然语言输入实现对结构化数据的交互式搜索体验。
Project Knowledge Exploration是由Microsoft Research开发的一个用于结构化数据的交互式搜索API。它通过自然语言输入,解释用户的查询并返回相关的结果。该API支持自动完成查询、快速检索匹配对象的详细信息、使用属性直方图进行可视化和交互式的细分体验等功能。该产品可以广泛应用于各种场景,包括知识图谱、数据分析、智能搜索等。
先进的自然语言处理模型
MiscNinja是一种先进的自然语言处理模型,具有强大的文本生成和理解能力。其优势在于可以应用于多种领域,如智能对话系统、文本摘要、自动翻译等。定价根据使用情况而定,定位于为开发者和企业提供强大的自然语言处理解决方案。
将知识图谱与Obsidian笔记整合,实现问答、链接预测等功能
ODIN是一个Obsidian的插件,它可以将用户的笔记知识图谱化,从而实现智能问答、链接预测等功能,帮助用户管理知识点,建立全面的知识体系。ODIN的关键功能包括:基于LLM的智能问答,可以直观查询笔记中的知识点;全局笔记网络可视化,以知识图的形式呈现笔记内容;基于语义的链接预测,自动在笔记间建立关联;基于语义的节点提示,发现笔记中的关键知识点等。ODIN可以大幅提升Obsidian在知识管理方面的能力,是作者构建个人知识管理系统的不二之选。
与数据库对话,用自然语言查询数据。
Chat with your Database 是一个创新的数据库交互工具,它允许用户通过自然语言与Postgres数据库进行交互。利用AI技术,用户可以轻松地查询、分析和操作数据库,而无需编写复杂的SQL代码。该产品支持开源,鼓励社区参与开发和贡献,代码在GitHub上公开,用户可以自由探索、贡献或定制以满足特定需求。
将文本转换为知识图谱的Python工具。
knowledge_graph_maker是一个Python库,能够根据给定的本体论将任意文本转换为知识图谱。知识图谱是一种语义网络,代表现实世界实体之间的网络和它们之间的关系。该库通过图算法和中心性计算,帮助用户深入分析文本内容,实现概念之间的连接性分析,以及通过图检索增强生成(GRAG)技术,提升与文本的交流深度。
使用自然语言与数据互动
Raw Query是一款使用先进的人工智能技术让您像与团队成员交谈一样与数据库交谈的工具。无论您是需要了解最新加入Pro计划的客户,还是需要添加新的销售或更新客户的电子邮件,Raw Query都能为您完成。它可以帮助您查询数据、添加数据、更新数据,让您的工作更加高效。
智能语义,知识图谱,AI+内容创作
智搜AI是一款基于人工智能技术的内容创作工具,通过智能语义和知识图谱技术,帮助用户快速生成高质量的文章、PPT等内容,提高生产力。同时,智搜AI还提供多种解决方案,包括AI+媒体、AI+金融等,满足不同领域的需求。
© 2025 AIbase 备案号:闽ICP备08105208号-14