需求人群:
"Kimi k1.5 适合需要复杂推理和逻辑分析的开发者、研究人员和教育工作者,能够帮助他们在编程、数学解题和代码生成等领域提高效率和准确性。"
使用场景示例:
在数学竞赛中,Kimi k1.5 能够快速生成复杂的数学推理过程并给出答案。
开发者可以利用 Kimi k1.5 生成高质量的代码片段,提升编程效率。
教育工作者可以使用该模型辅助教学,帮助学生理解复杂的数学和编程问题。
产品特色:
支持长上下文扩展,提升推理能力
多模态数据训练,支持文本和视觉推理
通过强化学习优化模型性能
提供长链推理到短链推理的转换方法
支持实时代码生成和编程辅助
使用教程:
1. 访问 Kimi OpenPlatform 并申请测试账号。
2. 使用提供的 API 密钥初始化客户端。
3. 构建请求消息,指定模型为 'kimi-k1.5-preview'。
4. 调用模型接口,设置参数(如温度、最大令牌数等)。
5. 接收模型返回的结果,并根据需要进行处理。
浏览量:791
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
Kimi k1.5 是一个通过强化学习扩展的多模态语言模型,专注于提升推理和逻辑能力。
Kimi k1.5 是由 MoonshotAI 开发的多模态语言模型,通过强化学习和长上下文扩展技术,显著提升了模型在复杂推理任务中的表现。该模型在多个基准测试中达到了行业领先水平,例如在 AIME 和 MATH-500 等数学推理任务中超越了 GPT-4o 和 Claude Sonnet 3.5。其主要优点包括高效的训练框架、强大的多模态推理能力以及对长上下文的支持。Kimi k1.5 主要面向需要复杂推理和逻辑分析的应用场景,如编程辅助、数学解题和代码生成等。
R1-Omni 是一个结合强化学习的全模态情绪识别模型,专注于提升多模态情绪识别的可解释性。
R1-Omni 是一个创新的多模态情绪识别模型,通过强化学习提升模型的推理能力和泛化能力。该模型基于 HumanOmni-0.5B 开发,专注于情绪识别任务,能够通过视觉和音频模态信息进行情绪分析。其主要优点包括强大的推理能力、显著提升的情绪识别性能以及在分布外数据上的出色表现。该模型适用于需要多模态理解的场景,如情感分析、智能客服等领域,具有重要的研究和应用价值。
xAI推出的最新旗舰AI模型Grok 3,具备强大的推理和多模态处理能力。
Grok 3是由Elon Musk的AI公司xAI开发的最新旗舰AI模型。它在计算能力和数据集规模上显著提升,能够处理复杂的数学、科学问题,并支持多模态输入。其主要优点是推理能力强大,能够提供更准确的答案,并且在某些基准测试中超越了现有的顶尖模型。Grok 3的推出标志着xAI在AI领域的进一步发展,旨在为用户提供更智能、更高效的AI服务。该模型目前主要通过Grok APP和X平台提供服务,未来还将推出语音模式和企业API接口。其定位是高端AI解决方案,主要面向需要深度推理和多模态交互的用户。
MedRAX是一个用于胸部X光片解读的医疗推理AI代理,整合多种分析工具,无需额外训练即可处理复杂医疗查询。
MedRAX是一个创新的AI框架,专门用于胸部X光(CXR)的智能分析。它通过整合最先进的CXR分析工具和多模态大型语言模型,能够动态处理复杂的医疗查询。MedRAX无需额外训练即可运行,支持实时CXR解读,适用于多种临床场景。其主要优点包括高度的灵活性、强大的推理能力以及透明的工作流程。该产品面向医疗专业人员,旨在提高诊断效率和准确性,推动医疗AI的实用化。
CUA 是一种能够通过图形界面与数字世界交互的通用接口。
Computer-Using Agent (CUA) 是 OpenAI 开发的一种先进的人工智能模型,结合了 GPT-4o 的视觉能力和通过强化学习的高级推理能力。它能够像人类一样与图形用户界面(GUI)交互,无需依赖特定操作系统的 API 或网络接口。CUA 的灵活性使其能够在多种数字环境中执行任务,如填写表单、浏览网页等。这一技术的出现标志着 AI 发展的下一步,为 AI 在日常工具中的应用开辟了新的可能性。CUA 目前处于研究预览阶段,通过 Operator 提供给美国的 Pro 用户使用。
UI-TARS 是一个用于自动化图形用户界面交互的下一代原生 GUI 代理模型。
UI-TARS 是由字节跳动开发的一种新型 GUI 代理模型,专注于通过类似人类的感知、推理和行动能力与图形用户界面进行无缝交互。该模型将感知、推理、定位和记忆等关键组件集成到单一的视觉语言模型中,能够实现无需预定义工作流程或手动规则的端到端任务自动化。其主要优点包括强大的跨平台交互能力、多步任务执行能力以及从合成和真实数据中学习的能力,适用于多种自动化场景,如桌面、移动和网页环境。
Gemini 2.0 Flash Thinking Experimental 是一款增强推理模型,能够展示其思考过程以提升性能和可解释性。
Gemini Flash Thinking 是 Google DeepMind 推出的最新 AI 模型,专为复杂任务设计。它能够展示推理过程,帮助用户更好地理解模型的决策逻辑。该模型在数学和科学领域表现出色,支持长文本分析和代码执行功能。它旨在为开发者提供强大的工具,以推动人工智能在复杂任务中的应用。
DeepSeek-R1-Distill-Llama-8B 是一个高性能的开源语言模型,适用于文本生成和推理任务。
DeepSeek-R1-Distill-Llama-8B 是 DeepSeek 团队开发的高性能语言模型,基于 Llama 架构并经过强化学习和蒸馏优化。该模型在推理、代码生成和多语言任务中表现出色,是开源社区中首个通过纯强化学习提升推理能力的模型。它支持商业使用,允许修改和衍生作品,适合学术研究和企业应用。
DeepSeek-R1-Distill-Qwen-14B 是一款高性能的文本生成模型,适用于多种推理和生成任务。
DeepSeek-R1-Distill-Qwen-14B 是 DeepSeek 团队开发的一款基于 Qwen-14B 的蒸馏模型,专注于推理和文本生成任务。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和生成质量,同时降低了计算资源需求。其主要优点包括高性能、低资源消耗和广泛的适用性,适用于需要高效推理和文本生成的场景。
DeepSeek-R1-Distill-Llama-70B 是一款基于强化学习优化的大型语言模型,专注于推理和对话能力。
DeepSeek-R1-Distill-Llama-70B 是由 DeepSeek 团队开发的一款大型语言模型,基于 Llama-70B 架构并通过强化学习进行优化。该模型在推理、对话和多语言任务中表现出色,支持多种应用场景,包括代码生成、数学推理和自然语言处理。其主要优点是高效的推理能力和对复杂问题的解决能力,同时支持开源和商业使用。该模型适用于需要高性能语言生成和推理能力的企业和研究机构。
这是一个先进的多模态大型语言模型系列,展示了卓越的整体性能。
InternVL2.5-MPO是一个基于InternVL2.5和混合偏好优化(MPO)的多模态大型语言模型系列。它在多模态任务中表现出色,通过整合新近增量预训练的InternViT与多种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型系列在多模态推理偏好数据集MMPR上进行了训练,包含约300万个样本,通过有效的数据构建流程和混合偏好优化技术,提升了模型的推理能力和回答质量。
多模态大语言模型,提升多模态推理能力
InternVL2-8B-MPO是一个多模态大语言模型(MLLM),通过引入混合偏好优化(MPO)过程,增强了模型的多模态推理能力。该模型在数据方面设计了自动化的偏好数据构建管线,并构建了MMPR这一大规模多模态推理偏好数据集。在模型方面,InternVL2-8B-MPO基于InternVL2-8B初始化,并使用MMPR数据集进行微调,展现出更强的多模态推理能力,且幻觉现象更少。该模型在MathVista上取得了67.0%的准确率,超越InternVL2-8B 8.7个点,且表现接近于大10倍的InternVL2-76B。
Google新一代AI模型,开启智能助理新时代。
Gemini 2.0是Google DeepMind推出的最新AI模型,旨在为“智能助理时代”提供支持。该模型在多模态能力上进行了升级,包括原生图像和音频输出以及工具使用能力,使得构建新的AI智能助理更加接近通用助理的愿景。Gemini 2.0的发布,标志着Google在AI领域的深入探索和持续创新,通过提供更强大的信息处理和输出能力,使得信息更加有用,为用户带来更高效和便捷的体验。
大规模多模态推理与指令调优平台
MAmmoTH-VL是一个大规模多模态推理平台,它通过指令调优技术,显著提升了多模态大型语言模型(MLLMs)在多模态任务中的表现。该平台使用开放模型创建了一个包含1200万指令-响应对的数据集,覆盖了多样化的、推理密集型的任务,并提供了详细且忠实的理由。MAmmoTH-VL在MathVerse、MMMU-Pro和MuirBench等基准测试中取得了最先进的性能,展现了其在教育和研究领域的重要性。
微软轻量级、先进的多模态模型,专注于文本和视觉的高质量推理密集数据。
Phi-3 Vision是一个轻量级、最先进的开放多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的非常高质量的推理密集数据。该模型属于Phi-3模型家族,多模态版本支持128K上下文长度(以token计),经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
基于开发者构建的生产 AI 平台
Fireworks 与世界领先的生成式 AI 研究人员合作,以最快的速度提供最佳模型。拥有经 Fireworks 精心筛选和优化的模型,以及企业级吞吐量和专业的技术支持。定位为最快速且最可靠的 AI 平台。
增强LLM推理能力的ReFT
ReFT是一种增强大型语言模型(LLMs)推理能力的简单而有效的方法。它首先通过监督微调(SFT)对模型进行预热,然后使用在线强化学习,具体来说是本文中的PPO算法,进一步微调模型。ReFT通过自动对给定问题进行大量推理路径的采样,并从真实答案中自然地得出奖励,从而显著优于SFT。ReFT的性能可能通过结合推理时策略(如多数投票和重新排名)进一步提升。需要注意的是,ReFT通过学习与SFT相同的训练问题而获得改进,而无需依赖额外或增强的训练问题。这表明ReFT具有更强的泛化能力。
基于多模态的 AI 模型,无缝进行图像、视频、音频和代码的推理
Google Gemini 是一款基于多模态的 AI 模型,能够无缝进行图像、视频、音频和代码的推理。Gemini 是 DeepMind 推出的最先进的 AI 模型,能够在 MMLU(大规模多任务语言理解)等各项测试中超越人类专家。Gemini 具有出色的推理能力,在各种多模态任务中取得了最先进的性能。
o1-pro 模型通过强化学习提升复杂推理能力,提供更优答案。
o1-pro 模型是一种先进的人工智能语言模型,专为提供高质量文本生成和复杂推理设计。其在推理和响应准确性上表现优越,适合需要高精度文本处理的应用场景。该模型的定价基于使用的 tokens,输入每百万 tokens 价格为 150 美元,输出每百万 tokens 价格为 600 美元,适合企业和开发者在其应用中集成高效的文本生成能力。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
Mistral OCR 是一款强大的文档理解 OCR 产品,能够以极高的准确性从 PDF 和图像中提取文本、图像、表格和方程式。
Mistral OCR 是由 Mistral AI 开发的先进光学字符识别 API,旨在以无与伦比的准确性提取和结构化文档内容。它能够处理包含文本、图像、表格和方程式的复杂文档,输出 Markdown 格式的结果,便于与 AI 系统和检索增强生成(RAG)系统集成。其高精度、高速度和多模态处理能力使其在大规模文档处理场景中表现出色,尤其适用于科研、法律、客服和历史文献保护等领域。Mistral OCR 的定价为每美元 1000 页标准使用量,批量处理可达每美元 2000 页,还提供企业自托管选项,满足特定隐私需求。
一款开源的14B参数量的数学模型,通过强化学习训练,性能卓越。
Light-R1-14B-DS 是由北京奇虎科技有限公司开发的开源数学模型。该模型基于 DeepSeek-R1-Distill-Qwen-14B 进行强化学习训练,在 AIME24 和 AIME25 数学竞赛基准测试中分别达到了 74.0 和 60.2 的高分,超越了许多 32B 参数量的模型。它在轻量级预算下成功实现了对已经长链推理微调模型的强化学习尝试,为开源社区提供了一个强大的数学模型工具。该模型的开源有助于推动自然语言处理在教育领域的应用,特别是数学问题解决方面,为研究人员和开发者提供了宝贵的研究基础和实践工具。
Light-R1 是一个专注于长链推理(Long COT)的开源项目,通过课程式 SFT、DPO 和 RL 提供从零开始的训练方法。
Light-R1 是一个由 Qihoo360 开发的开源项目,旨在通过课程式监督微调(SFT)、直接偏好优化(DPO)和强化学习(RL)训练长链推理模型。该项目通过去污染数据集和高效的训练方法,实现了从零开始的长链推理能力。其主要优点包括开源的训练数据、低成本的训练方式以及在数学推理领域的卓越性能。项目背景基于当前长链推理模型的训练需求,旨在提供一种透明且可复现的训练方法。项目目前免费开源,适合研究机构和开发者使用。
基于Gemini 2.0的机器人模型,将AI带入物理世界,具备视觉、语言和动作能力。
Gemini Robotics是Google DeepMind推出的一种先进的人工智能模型,专为机器人应用而设计。它基于Gemini 2.0架构,通过视觉、语言和动作(VLA)的融合,使机器人能够执行复杂的现实世界任务。该技术的重要性在于它推动了机器人从实验室走向日常生活和工业应用的进程,为未来智能机器人的发展奠定了基础。Gemini Robotics的主要优点包括强大的泛化能力、交互性和灵巧性,使其能够适应不同的任务和环境。目前,该技术处于研究和开发阶段,尚未明确具体的价格和市场定位。
智元发布首个通用具身基座大模型GO-1,开创性提出ViLLA架构,推动具身智能发展。
智元通用具身基座大模型GO-1是智元推出的一款革命性的人工智能模型。该模型基于创新的Vision-Language-Latent-Action(ViLLA)架构,通过多模态大模型(VLM)和混合专家(MoE)系统,实现了从视觉和语言输入到机器人动作执行的高效转换。GO-1能够利用人类视频和真实机器人数据进行学习,具备强大的泛化能力,能够在极少数据甚至零样本下快速适应新任务和环境。其主要优点包括高效的学习能力、强大的泛化性能以及对多种机器人本体的适配性。该模型的推出标志着具身智能向通用化、开放化和智能化方向迈出了重要一步,有望在商业、工业和家庭等多个领域发挥重要作用。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包,简化多智能体工作流的编排。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包。它基于 OpenAI 的先进模型能力,如高级推理、多模态交互和新的安全技术,为开发者提供了一种简化的方式来构建、部署和扩展可靠的智能体应用。该工具包不仅支持单智能体和多智能体工作流的编排,还集成了可观测性工具,帮助开发者追踪和优化智能体的执行流程。其主要优点包括易于配置的 LLM 模型、智能的智能体交接机制、可配置的安全检查以及强大的调试和性能优化功能。该工具包适用于需要自动化复杂任务的企业和开发者,旨在通过智能体技术提升生产力和效率。
Steiner 是一个基于合成数据训练的推理模型,旨在探索多种推理路径并自主验证。
Steiner 是由 Yichao 'Peak' Ji 开发的推理模型系列,专注于通过强化学习在合成数据上训练,能够在推理时探索多种路径并自主验证或回溯。该模型的目标是复现 OpenAI o1 的推理能力,并验证推理时的扩展曲线。Steiner-preview 是一个正在进行中的项目,其开源目的是为了分享知识并获取更多真实用户的反馈。尽管该模型在某些基准测试中表现出色,但尚未完全实现 OpenAI o1 的推理扩展能力,因此仍处于开发阶段。
SmolVLM2 是一个专注于视频内容分析和生成的轻量化语言模型。
SmolVLM2 是一种轻量级的视频语言模型,旨在通过分析视频内容生成相关的文本描述或视频亮点。该模型具有高效性、低资源消耗的特点,适合在多种设备上运行,包括移动设备和桌面客户端。其主要优点是能够快速处理视频数据并生成高质量的文本输出,为视频内容创作、视频分析和教育等领域提供了强大的技术支持。该模型由 Hugging Face 团队开发,定位为高效、轻量化的视频处理工具,目前处于实验阶段,用户可以免费试用。
NotaGen 是一个用于符号音乐生成的模型,采用大语言模型训练范式,专注于生成高质量古典乐谱。
NotaGen 是一款创新的符号音乐生成模型,通过预训练、微调和强化学习三个阶段提升音乐生成质量。它利用大语言模型技术,能够生成高质量的古典乐谱,为音乐创作带来新的可能性。该模型的主要优点包括高效生成、风格多样和高质量输出。它适用于音乐创作、教育和研究等领域,具有广泛的应用前景。
© 2025 AIbase 备案号:闽ICP备08105208号-14