浏览量:13
最新流量情况
月访问量
14.98k
平均访问时长
00:00:22
每次访问页数
1.89
跳出率
46.81%
流量来源
直接访问
39.30%
自然搜索
47.03%
邮件
0.09%
外链引荐
7.26%
社交媒体
5.58%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
5.91%
英国
7.84%
印度
10.30%
意大利
6.18%
美国
41.69%
越南
11.60%
定制化大型语言模型的训练平台
Entry Point AI是一款训练大型语言模型的平台,可以快速高效地进行训练、管理和评估自定义模型,无需编写代码。它提供了跨平台的训练工具,可以比较模型性能、标注数据集、生成合成数据,并以速度和质量优于基于对话的模型。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
长视频语言理解的时空自适应压缩模型
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
前沿级多模态大型语言模型,实现视觉-语言任务的先进性能。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
免费且快速的提示链生成器
PromptChainer 是一个旨在提高大型语言模型输出质量的工具,通过自动化提示链的生成,帮助用户将复杂任务分解成可管理的小步骤,从而获得更精确和高质量的结果。它特别适合需要多步骤和/或大量上下文和知识的任务。
专业的数据解决方案提供商
博登智能自主研发的数据标注处理平台——BASE(Boden Annotation Service Enhancement),具有超强适用性,可完成从数据采集、清洗、标注到验证的全套服务。BASE平台覆盖了包括语音、文本、图像、视频、点云等多种模态类型的数据处理能力,通过AI辅助标注的形式,相较于传统的标注方式,帮助企业节省了高达30%-40%的成本,并提升50%以上的效率,已经获得了市场的广泛认可。 数据处理平台——BASE平台能够支持开展包括通用图像标注,3D/4D点云标注,图片点云融合标注,NLP文本标注,医疗影像标注,视频描述标注,音素标注,音频标注等标注业务。
前端标注组件库,支持多种数据标注方式。
labelU-Kit 是一个开源的前端标注组件库,提供图片、视频和音频的标注功能,支持2D框、点、线、多边形、立体框等多种标注方式。它以NPM包的形式提供,方便开发者集成到自己的标注平台中,提高数据标注的效率和灵活性。
高质量、类人同声传译系统
CLASI是一个由字节跳动研究团队开发的高质量、类人同声传译系统。它通过新颖的数据驱动读写策略平衡翻译质量和延迟,采用多模态检索模块来增强特定领域术语的翻译,利用大型语言模型(LLMs)生成容错翻译,考虑输入音频、历史上下文和检索信息。在真实世界场景中,CLASI在中英和英中翻译方向上分别达到了81.3%和78.0%的有效信息比例(VIP),远超其他系统。
基于大型语言模型的智能代理研究
xLAM是一个由Salesforce AI Research团队开发的基于大型语言模型(Large Language Models, LLMs)的智能代理研究项目。它通过聚合来自不同环境的智能代理轨迹,标准化并统一这些轨迹到一致的格式,以创建一个优化的通用数据加载器,专门用于智能代理的训练。xLAM-v0.1-r是此模型系列的0.1版本,专为研究目的设计,与VLLM和FastChat平台兼容。
NVIDIA的高级语言模型,优化于英文对话场景。
Nemotron-4-340B-Instruct是由NVIDIA开发的大型语言模型(LLM),专为英文单轮和多轮对话场景优化。该模型支持4096个token的上下文长度,经过监督式微调(SFT)、直接偏好优化(DPO)和奖励感知偏好优化(RPO)等额外的对齐步骤。模型在约20K人工标注数据的基础上,通过合成数据生成管道合成了超过98%的用于监督微调和偏好微调的数据。这使得模型在人类对话偏好、数学推理、编码和指令遵循方面表现良好,并且能够为多种用例生成高质量的合成数据。
专为数据标注、清洗和丰富设计的先进语言模型
Refuel LLM-2 是一款为数据标注、清洗和丰富而设计的先进语言模型。它在约30种数据标注任务的基准测试中超越了所有现有的最先进语言模型,包括GPT-4-Turbo、Claude-3-Opus和Gemini-1.5-Pro。Refuel LLM-2 旨在提高数据团队的工作效率,减少在数据清洗、规范化、标注等前期工作上的手动劳动,从而更快地实现数据的商业价值。
一款具有128k有效上下文长度的70B参数的大型语言模型。
Llama-3-Giraffe-70B-Instruct是Abacus.AI推出的一款大型语言模型,它通过PoSE和动态NTK插值的训练方法,具有更长的有效上下文长度,能够处理大量的文本数据。该模型在训练中使用了约1.5B个token,并且通过适配器转换技术,将Llama-3-70B-Base模型的适配器应用到Llama-3-Giraffe-70B-Instruct上,以提高模型的性能。
简化 LLM 提示管理和促进团队协作
Langtail 是一个旨在简化大型语言模型(LLM)提示管理的平台。通过Langtail,您可以增强团队协作、提高效率,并更深入地了解您的AI工作原理。尝试Langtail,以更具协作和洞察力的方式构建LLM应用。
通过自然语言描述创建定制软件(基于LLM的多智能体协作)
ChatDev是一个虚拟软件公司,由扮演不同角色(如CEO、产品经理、技术总监、程序员、测试员等)的智能体组成。这些智能体通过参与设计、编码、测试等专门的功能研讨会来协作开发软件。ChatDev旨在提供一个易于使用、高度可定制和可扩展的框架,基于大型语言模型(LLM),是研究集体智能的理想场景。它支持定制化设置,如自定义软件开发流程、角色设置等。用户只需使用自然语言描述想法,ChatDev就能高效生成对应的软件。
一个新的高效开源大型语言模型标准
DBRX是一个由Databricks的Mosaic研究团队构建的通用大型语言模型(LLM),在标准基准测试中表现优于所有现有开源模型。它采用Mixture-of-Experts (MoE)架构,使用362亿个参数,拥有出色的语言理解、编程、数学和逻辑推理能力。DBRX旨在推动高质量开源LLM的发展,并且便于企业根据自身数据对模型进行定制。Databricks为企业用户提供了交互式使用DBRX、利用其长上下文能力构建检索增强系统,并基于自身数据构建定制DBRX模型的能力。
Stability AI推出的Stable Code Instruct 3B,一款基于代码指令的大型语言模型
Stability AI宣布推出Stable Code Instruct 3B,这是一个大型的语言模型,专门设计用于理解和执行代码相关的指令。该模型的目的是帮助开发者更高效地编写、审查和优化代码,提高软件开发的生产力。
基于 AI 的知识处理平台,执行商业任务的简单 API
KPU (Knowledge Processing Unit) 是一种专有的丰富框架,利用了大型语言模型的强大功能,并将推理和数据处理分离在一个能够解决复杂任务的开放系统中。它由推理引擎、执行引擎和虚拟上下文窗口三个主要组件组成。推理引擎负责设计解决用户任务的分步计划,利用了可插拔的大型语言模型(目前广泛测试了 GPT-4 Turbo)。执行引擎接收来自推理引擎的命令并执行,结果作为反馈发送回推理引擎进行重新规划。虚拟上下文窗口管理推理引擎和执行引擎之间的数据和信息输入输出。这种分离推理和执行的架构使大型语言模型能专注于推理,避免了谎言、数据处理或检索最新信息等缺陷。KPU 旨在提升任务质量和性能,解决大数据量、多模态内容、开放性问题解决和交互性等挑战。
通过加权平均奖励模型提高大型语言模型的效率和可靠性。
WARM是一种通过加权平均奖励模型(WARM)来对齐大型语言模型(LLMs)与人类偏好的解决方案。首先,WARM对多个奖励模型进行微调,然后在权重空间中对它们进行平均。通过加权平均,WARM相对于传统的预测集成方法提高了效率,同时改善了在分布转移和偏好不一致性下的可靠性。我们的实验表明,WARM在摘要任务上的表现优于传统方法,使用最佳N和RL方法,WARM提高了LLM预测的整体质量和对齐性。
Appen是创新世界级AI应用的值得信赖的合作伙伴
Appen是一个提供专业工具和专业知识的公司,致力于构建更美好的未来。我们的产品帮助客户构建创新的人工智能应用,提供高质量的数据标注、数据采集和数据处理服务。我们的优势是丰富的经验、灵活的解决方案和可靠的合作关系。我们的定价根据项目的复杂性和规模而定。Appen的定位是成为创新世界级AI应用的首选合作伙伴。
Generative AI 模型评估工具
Deepmark AI 是一款用于评估大型语言模型(LLM)的基准工具,可在自己的数据上对各种任务特定指标进行评估。它与 GPT-4、Anthropic、GPT-3.5 Turbo、Cohere、AI21 等领先的生成式 AI API 进行预集成。
语义增强数据成就是AI定制解决方案
Semiring是一个端到端的平台,能够通过少量样本数据生成高质量合成数据集,从而使开发者可以轻松创建高性能的机器学习模型。它提供了完整的ML模型构建流程,包括数据合成、模型训练、评估和部署。关键功能及优势包括:基于先进自然语言模型的高效数据合成;支持自定义域特定数据;无缝自动标注;多样化的预训练模型库;自动模型调优;一体化的云端训练服务;简易的API集成和高速推理等。相比于直接提示大型语言模型和自建方案,Semiring以其卓越的速度、成本效益和质量优势脱颖而出。
驱动AI到生产的数据引擎
Dataloop AI是一款用于驱动AI到生产的数据引擎。它覆盖了整个数据管理周期,包括数据标注、自动化数据操作、部署生产流程和人工智能的人在环节。Dataloop AI提供了完整的数据管理解决方案,帮助用户管理、协作、分发和利用数据,并通过单一访问点进行集成管理。它还提供了自定义自动化流程,使用户能够更快地将模型部署到生产环境,并实现无限扩展的人工智能能力。Dataloop AI还提供了端到端的云端标注平台,支持多种应用和自动化工具。
先进的大型语言模型,用于编程
Code Llama 是一款先进的大型语言模型,可以通过文本提示生成代码。它是当前公开可用的语言模型中在编程任务上达到最佳性能的模型之一。Code Llama 可以帮助开发人员提高工作效率,降低编码门槛,并作为一个教育工具帮助编程学习者编写更健壮、更好文档化的软件。Code Llama 提供了多个版本,包括基础版、针对 Python 的专用版和针对自然语言指令的定制版。它支持多种流行的编程语言,如 Python、C++、Java 等。Code Llama 免费供研究和商业使用。
构建监督式大型语言模型的无代码平台
Supervised AI是一个无代码AI开发平台,利用OpenAI的GPT引擎,构建由您自己的数据支持的监督式大型语言模型。您可以使用我们的自定义模型和数据源,在高准确率和快速开发的环境下构建强大且可扩展的AI。同时,您还可以使用Supervised API将您的AI模型集成到任何地方。
AI-based decoder for quantum computing error correction
AlphaQubit是由Google DeepMind和Quantum AI团队共同开发的人工智能系统,它能够以最先进的准确性识别量子计算机中的错误。这项技术结合了机器学习和量子纠错的专业知识,旨在推动可靠量子计算机的构建,这对于解决复杂问题、实现科学突破和探索新领域具有重要意义。AlphaQubit的主要优点包括高准确性和对大规模量子计算的适用性。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
Sandra AI,专为汽车分销设计的智能语音代理。
Sandra AI是一个智能语音代理,专为汽车分销行业设计,提供全天候的电话接听服务,帮助经销商不错过任何来电,提高客户满意度和业务机会。Sandra AI具有深厚的行业知识,能够像真正的专家一样与客户交流,并且能够无缝集成到经销商的软件中,实现快速、平滑的部署。产品背景信息显示,Sandra AI致力于通过人工智能技术优化客户服务,让经销商能够专注于核心业务,同时提升团队的工作效率。
© 2024 AIbase 备案号:闽ICP备08105208号-14