浏览量:30
最新流量情况
月访问量
23.64k
平均访问时长
00:00:44
每次访问页数
3.89
跳出率
42.70%
流量来源
直接访问
41.19%
自然搜索
42.72%
邮件
0.08%
外链引荐
9.51%
社交媒体
5.82%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
5.53%
英国
8.53%
印度
6.91%
美国
27.72%
越南
6.39%
提供企业级大型语言模型和预测人工智能,帮助企业提升预测能力
Wand AI是一款基于企业级大型语言模型和预测人工智能的数据管理工具。通过使用Wand AI,您可以将数据转化为AI,大大提高业务的预测能力。Wand AI提供自助式、无代码、无麻烦的操作,专为业务用户打造。您只需专注于自己的业务需求,Wand平台为您提供所需的AI解决方案。无论是销售和营销、客户成功、人力资源、风险与合规、运营、采购等领域,Wand AI都能为您提供强大的功能和优势。请访问官方网站了解更多信息。
开源数据管理与标注平台
Dioptra是一款开源的数据管理与标注平台,为计算机视觉、自然语言处理和语言模型提供数据筛选和标注服务。用户可以注册并上传自己的数据,使用Dioptra的数据诊断工具进行模型故障排查和回归测试,并使用其主动学习算法筛选出最有价值的未标注数据。同时,Dioptra提供API接口,方便用户与标注和重新训练流程集成。通过使用Dioptra,用户可以提高模型在难案例上的准确率,缩短训练周期,并降低标注成本。
开源数据管理和标注平台
Dioptra 数据管理平台是一个开源的数据管理和标注平台,为计算机视觉、自然语言处理和语言模型提供数据筛选、标注和重训练的功能。通过注册你的元数据到 Dioptra 平台,你可以诊断模型失败原因,使用活跃学习算法筛选最有价值的未标注数据,并通过 Dioptra 的 API 与你的标注和重训练流程集成。我们的客户通过使用 Dioptra 平台,提高了模型在难例上的准确性,缩短了训练周期,并减少了标注成本。
推动人工智能安全治理,促进技术健康发展
《人工智能安全治理框架》1.0版是由全国网络安全标准化技术委员会发布的技术指南,旨在鼓励人工智能创新发展的同时,有效防范和化解人工智能安全风险。该框架提出了包容审慎、确保安全,风险导向、敏捷治理,技管结合、协同应对,开放合作、共治共享等原则。它结合人工智能技术特性,分析风险来源和表现形式,针对模型算法安全、数据安全和系统安全等内生安全风险,以及网络域、现实域、认知域、伦理域等应用安全风险,提出了相应的技术应对和综合防治措施。
人工智能项目管理
Savvy Planning Systems是一款基于人工智能的项目管理工具,通过自动化任务调度、实时项目数据分析、项目估算和预测项目截止日期等功能,让软件开发变得更加轻松。界面简洁、易用,最大程度提高工作效率。
基于大型语言模型的智能代理研究
xLAM是一个由Salesforce AI Research团队开发的基于大型语言模型(Large Language Models, LLMs)的智能代理研究项目。它通过聚合来自不同环境的智能代理轨迹,标准化并统一这些轨迹到一致的格式,以创建一个优化的通用数据加载器,专门用于智能代理的训练。xLAM-v0.1-r是此模型系列的0.1版本,专为研究目的设计,与VLLM和FastChat平台兼容。
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
数据管理和查询平台
Xata是一个数据管理和查询平台,帮助用户轻松管理和查询他们的数据。它提供了直观的界面和强大的功能,让用户能够快速有效地处理和分析大量数据。Xata支持多种数据源和格式,并提供灵活的查询功能,让用户能够轻松地提取需要的数据。它还具有强大的数据可视化功能和自动化工具,帮助用户更好地理解和利用他们的数据。Xata定价灵活,适合个人用户和企业用户。
定制化大型语言模型的训练平台
Entry Point AI是一款训练大型语言模型的平台,可以快速高效地进行训练、管理和评估自定义模型,无需编写代码。它提供了跨平台的训练工具,可以比较模型性能、标注数据集、生成合成数据,并以速度和质量优于基于对话的模型。
革命性AI数据管理,提升99%准确率
Future AGI是一个自动化AI模型评估平台,通过自动评分AI模型输出,消除了手动QA评估的需求,使QA团队能够专注于更战略性的任务,提高效率和带宽高达10倍。该平台使用自然语言定义对业务最重要的指标,提供增强的灵活性和控制力,以评估模型性能,确保与业务目标的一致性。它还通过整合性能数据和用户反馈到开发过程中,创建了一个持续改进的循环,使AI在每次互动中变得更智能。
先进的大型语言模型,用于编程
Code Llama 是一款先进的大型语言模型,可以通过文本提示生成代码。它是当前公开可用的语言模型中在编程任务上达到最佳性能的模型之一。Code Llama 可以帮助开发人员提高工作效率,降低编码门槛,并作为一个教育工具帮助编程学习者编写更健壮、更好文档化的软件。Code Llama 提供了多个版本,包括基础版、针对 Python 的专用版和针对自然语言指令的定制版。它支持多种流行的编程语言,如 Python、C++、Java 等。Code Llama 免费供研究和商业使用。
用于数据分析的人工智能平台
Utopia Criativa是一款基于人工智能的数据分析平台,提供强大的数据分析和预测功能。其优势在于智能算法和简单易用的界面,定价灵活,适用于各种规模的企业。定位于帮助企业更好地理解和利用数据。
京东自主研发的人工智能开放平台
京东人工智能开放平台NeuHub,汇聚京东自主研发的人工智能核心技术,包含语音、图像、视频、NLP等技术,通过平台向外开放,助力行业智能升级。平台还提供数据标注、模型开发、训练和发布等全流程服务,以及创新应用案例,帮助企业实现智能化转型。
构建一个会讲故事的人工智能大型语言模型。
LLM101n是一个开源课程,旨在教授如何从头开始构建一个能讲故事的人工智能大型语言模型(LLM)。课程内容涵盖了从基础到高级的多个方面,包括语言模型、机器学习、深度学习框架等,适合希望深入理解AI和LLM的编程人员和研究人员。
简化的测试数据管理工具
DATPROF是一款集数据脱敏、数据子集化、数据提供和数据发现于一体的测试数据管理工具。它能帮助用户轻松管理测试数据,并保护敏感数据的安全性。DATPROF具有简单易用的界面,提供丰富的功能和灵活的定价方案,适用于各种测试环境和场景。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
AI驱动的数据开发和分析平台,让数据管理变得简单高效。
Chat2DB是一个AI驱动的数据开发和分析平台,它通过集成数据管理、研发、分析和应用于一体,为不同角色的用户提供了一个无缝对接的全链路数据管理平台。该平台利用先进的AI技术,简化了SQL研发和数据报表的创建,使得即使是非技术背景的用户也能轻松进行复杂的数据查询。Chat2DB支持多种数据库类型,包括关系型和非关系型数据库,为用户提供了一个集中一站式的数据库管理解决方案。
OLAMI是一个人工智能开放平台
OLAMI是一个提供云端API、管理界面、多元机器感知解决方案的人工智能软件开发平台。OLAMI平台具有语音识别、自然语言理解、对话管理、语音合成等语音AI技术,以及图像识别、语义理解等视觉AI技术,可以轻松地为产品加入人工智能,提升用户体验。
vivo自主研发的智能语言理解模型
蓝心大模型是vivo自主研发的智能语言理解模型,具有70亿模型参数量,可以处理32K上下文长度。它基于260TB的多语言训练语料,拥有强大的语言理解能力,可以广泛应用于内容创作、知识问答、逻辑推理、代码生成等场景,持续为用户提供安全可靠的人机交互体验。该模型已通过严格的安全合规检测,输出结果安全合规。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
构建监督式大型语言模型的无代码平台
Supervised AI是一个无代码AI开发平台,利用OpenAI的GPT引擎,构建由您自己的数据支持的监督式大型语言模型。您可以使用我们的自定义模型和数据源,在高准确率和快速开发的环境下构建强大且可扩展的AI。同时,您还可以使用Supervised API将您的AI模型集成到任何地方。
大型语言模型,支持多语言和代码数据
Mistral-Nemo-Instruct-2407是由Mistral AI和NVIDIA联合训练的大型语言模型(LLM),是Mistral-Nemo-Base-2407的指导微调版本。该模型在多语言和代码数据上进行了训练,显著优于大小相似或更小的现有模型。其主要特点包括:支持多语言和代码数据训练、128k上下文窗口、可替代Mistral 7B。模型架构包括40层、5120维、128头维、1436隐藏维、32个头、8个kv头(GQA)、2^17词汇量(约128k)、旋转嵌入(theta=1M)。该模型在多种基准测试中表现出色,如HellaSwag(0-shot)、Winogrande(0-shot)、OpenBookQA(0-shot)等。
人工智能领域的多轮对话处理专家
汉王天地大模型是汉王科技推出的一款专注于人工智能领域的大语言模型,拥有30年的行业积累。它能够实现多轮对话,高效处理任务,并深耕办公、教育、人文等多个垂直细分领域。该模型通过从人类反馈中进行强化学习,不断优化自身智能,提供包括智能校对、自动翻译、法律咨询、绘画生成、文案生成等在内的多样化服务,以赋能法律、人文、办公、教育、医养等行业,提升效率和创意。
一个新的高效开源大型语言模型标准
DBRX是一个由Databricks的Mosaic研究团队构建的通用大型语言模型(LLM),在标准基准测试中表现优于所有现有开源模型。它采用Mixture-of-Experts (MoE)架构,使用362亿个参数,拥有出色的语言理解、编程、数学和逻辑推理能力。DBRX旨在推动高质量开源LLM的发展,并且便于企业根据自身数据对模型进行定制。Databricks为企业用户提供了交互式使用DBRX、利用其长上下文能力构建检索增强系统,并基于自身数据构建定制DBRX模型的能力。
通过加权平均奖励模型提高大型语言模型的效率和可靠性。
WARM是一种通过加权平均奖励模型(WARM)来对齐大型语言模型(LLMs)与人类偏好的解决方案。首先,WARM对多个奖励模型进行微调,然后在权重空间中对它们进行平均。通过加权平均,WARM相对于传统的预测集成方法提高了效率,同时改善了在分布转移和偏好不一致性下的可靠性。我们的实验表明,WARM在摘要任务上的表现优于传统方法,使用最佳N和RL方法,WARM提高了LLM预测的整体质量和对齐性。
一站式开放的多云平台,适用于数据、分析和人工智能
Data Lakehouse Platform by Databricks是一个简单、开放和多云的平台,适用于所有数据、分析和人工智能需求。它提供统一的数据湖架构,支持数据共享、数据治理和数据管理。此外,它还具备强大的人工智能功能,可以构建、训练和管理端到端的AI应用程序。定价请参考官方网站。
© 2025 AIbase 备案号:闽ICP备08105208号-14