需求人群:
"DisPose的目标受众是计算机视觉和图像动画领域的研究人员和开发者,特别是那些需要生成高质量、具有高度控制性的人类动画视频的专业人士。该技术适合他们,因为它提供了一种无需复杂输入即可生成逼真动画的方法,同时保持了生成内容的多样性和个性化。"
使用场景示例:
1. 使用DisPose技术,从一张静态图片生成一段人物行走的视频。
2. 利用DisPose将某个人物的动作转移到另一个人物模型上,实现动作的无缝转换。
3. 在电影制作中,DisPose可以用来生成复杂的人物动作场景,减少实际拍摄的成本和时间。
产品特色:
- 运动场引导:从稀疏运动场和参考图像生成密集运动场,提供区域级别的密集引导。
- 关键点对应:提取与姿态关键点对应的扩散特征,并将其转移到目标姿态。
- 混合ControlNet:即插即用的模块,无需修改现有模型参数即可提高视频生成质量。
- 视频生成:使用参考图像和驱动视频生成新视频,保持运动对齐和身份信息一致性。
- 质量与一致性提升:通过DisPose技术,生成的视频在质量和一致性上优于现有方法。
- 无需额外密集输入:减少对额外密集输入如深度图的依赖,提高模型的泛化能力。
- 插件式集成:可以轻松集成到现有的图像动画方法中,提升性能。
使用教程:
1. 访问DisPose的官方网站并下载相关代码。
2. 阅读文档,了解如何配置环境和依赖。
3. 准备参考图像和驱动视频,确保它们符合DisPose的输入要求。
4. 运行DisPose代码,输入参考图像和驱动视频。
5. 观察生成的视频,检查运动对齐和身份信息的一致性。
6. 如有需要,调整DisPose的参数以优化视频生成效果。
7. 将生成的视频用于进一步的研究或商业用途。
浏览量:82
一种用于控制人类图像动画的方法
DisPose是一种用于控制人类图像动画的方法,它通过运动场引导和关键点对应来提高视频生成的质量。这项技术能够从参考图像和驱动视频中生成视频,同时保持运动对齐和身份信息的一致性。DisPose通过从稀疏的运动场和参考图像生成密集的运动场,提供区域级别的密集引导,同时保持稀疏姿态控制的泛化能力。此外,它还从参考图像中提取与姿态关键点对应的扩散特征,并将这些点特征转移到目标姿态,以提供独特的身份信息。DisPose的主要优点包括无需额外的密集输入即可提取更通用和有效的控制信号,以及通过即插即用的混合ControlNet提高生成视频的质量和一致性,而无需冻结现有模型参数。
X-Dyna是一种基于扩散模型的零样本人类图像动画生成技术。
X-Dyna是一种创新的零样本人类图像动画生成技术,通过将驱动视频中的面部表情和身体动作迁移到单张人类图像上,生成逼真且富有表现力的动态效果。该技术基于扩散模型,通过Dynamics-Adapter模块,将参考外观上下文有效整合到扩散模型的空间注意力中,同时保留运动模块合成流畅复杂动态细节的能力。它不仅能够实现身体姿态控制,还能通过本地控制模块捕捉与身份无关的面部表情,实现精确的表情传递。X-Dyna在多种人类和场景视频的混合数据上进行训练,能够学习物理人体运动和自然场景动态,生成高度逼真和富有表现力的动画。
将图像和文本转换成短视频的AI驱动平台
img2video是一个利用先进AI技术将静态图像和文本转换成短视频的平台,特别适合社交媒体内容创作。它通过简化视频创作流程,使得用户能够轻松创建引人注目的视频内容,提升内容的吸引力和传播力。该产品背景信息显示,它适用于多种视频创作场景,如产品展示、舞蹈视频、旧照片动画等,并且提供了多种视频生成选项,满足不同用户的需求。价格方面,虽然页面上没有明确说明,但提到了'定价'页面,可能意味着有付费服务。
通用角色图像动画框架,支持多种角色类型动画生成。
Animate-X是一个基于LDM的通用动画框架,用于各种角色类型(统称为X),包括人物拟态角色。该框架通过引入姿势指示器来增强运动表示,可以更全面地从驱动视频中捕获运动模式。Animate-X的主要优点包括对运动的深入建模,能够理解驱动视频的运动模式,并将其灵活地应用到目标角色上。此外,Animate-X还引入了一个新的Animated Anthropomorphic Benchmark (A2Bench) 来评估其在通用和广泛适用的动画图像上的性能。
2.5D视差效果视频制作工具
DepthFlow是一个高度可定制的视差着色器,用于动画化您的图像。它是一个免费且开源的ImmersityAI替代品,能够将图像转换成具有2.5D视差效果的视频。该工具拥有快速的渲染能力,支持多种后处理效果,如晕影、景深、镜头畸变等。它支持多种参数调整,能够创建灵活的运动效果,并且内置了多种预设动画。此外,它还支持视频编码导出,包括H264、HEVC、AV1等格式,并且提供了无需水印的用户体验。
通过生成运动场适应实现单图像动画化
MOFA-Video是一种能够将单张图片通过各种控制信号动画化的方法。它采用了稀疏到密集(S2D)运动生成和基于流的运动适应技术,可以有效地使用轨迹、关键点序列及其组合等不同类型的控制信号来动画化单张图片。在训练阶段,通过稀疏运动采样生成稀疏控制信号,然后训练不同的MOFA-Adapters来通过预训练的SVD生成视频。在推理阶段,不同的MOFA-Adapters可以组合起来共同控制冻结的SVD。
基于扩散模型的肖像图像动画技术
Hallo是一个由复旦大学开发的肖像图像动画技术,它利用扩散模型生成逼真且动态的肖像动画。与传统依赖参数模型的中间面部表示不同,Hallo采用端到端的扩散范式,并引入了一个分层的音频驱动视觉合成模块,以增强音频输入和视觉输出之间的对齐精度,包括嘴唇、表情和姿态运动。该技术提供了对表情和姿态多样性的自适应控制,能够更有效地实现个性化定制,适用于不同身份的人。
基于视频扩散先验为开放域图像添加动画的工具
DynamiCrafter是一款由Jinbo Xing、Menghan Xia等人开发的图像动画工具。通过利用预训练的视频扩散先验,DynamiCrafter可以基于文本提示为开放域的静止图像添加动画效果。该工具支持高分辨率模型,提供更好的动态效果、更高的分辨率和更强的一致性。DynamiCrafter主要用于故事视频生成、循环视频生成和生成帧插值等场景。
零样本图像动画生成器
AnimateZero是一款零样本图像动画生成器,通过分离外观和运动生成视频,解决了黑盒、低效、不可控等问题。它可以通过零样本修改将预训练的T2V模型转换为I2V模型,从而实现零样本图像动画生成。AnimateZero还可以用于视频编辑、帧插值、循环视频生成和真实图像动画等场景,具有较高的主观质量和匹配度。
生成逼真、唇同步的说唱视频
VividTalk是一种一次性音频驱动的头像生成技术,基于3D混合先验。它能够生成具有表情丰富、自然头部姿态和唇同步的逼真说唱视频。该技术采用了两阶段通用框架,支持生成具有上述所有特性的高视觉质量的说唱视频。具体来说,在第一阶段,通过学习两种运动(非刚性表情运动和刚性头部运动),将音频映射到网格。对于表情运动,采用混合形状和顶点作为中间表示,以最大化模型的表征能力。对于自然头部运动,提出了一种新颖的可学习头部姿势码本,并采用两阶段训练机制。在第二阶段,提出了一个双分支运动VAE和一个生成器,将网格转换为密集运动,并逐帧合成高质量视频。大量实验证明,VividTalk能够生成具有唇同步和逼真增强的高视觉质量说唱视频,且在客观和主观比较中优于以往的最先进作品。该技术的代码将在发表后公开发布。
© 2025 AIbase 备案号:闽ICP备08105208号-14