需求人群:
"该产品适合需要快速生成高质量 3D 模型的研究人员、设计师和开发者,尤其是在需要从文本或图像快速生成 3D 内容的场景中,例如 3D 建模、虚拟现实和增强现实应用。"
使用场景示例:
使用文本提示 'A beautiful rainbow fish' 生成 3D 高斯点云模型。
从单视图图像生成一个 3D 高斯点云的玩具机器人模型。
结合 ControlNet,将一个普通机器人模型转换为具有蒸汽朋克风格的 3D 模型。
产品特色:
从文本提示生成 3D 高斯点云
从单视图图像生成 3D 高斯点云
支持可控生成,如通过 ControlNet 调整生成风格
提供高效的 3D 内容生成,速度可达 1~2 秒
兼容多种预训练的 2D 扩散模型,便于扩展和适配
使用教程:
访问项目主页并下载预训练模型。
准备文本提示或单视图图像作为输入。
使用提供的代码库加载模型并运行生成脚本。
调整生成参数(如分辨率、风格等)以优化输出。
查看生成的 3D 高斯点云模型并进行后续处理或应用。
浏览量:17
最新流量情况
月访问量
240
平均访问时长
00:00:00
每次访问页数
1.00
跳出率
46.42%
流量来源
直接访问
35.42%
自然搜索
45.83%
邮件
0.19%
外链引荐
12.79%
社交媒体
3.44%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
100.00%
DiffSplat 是一个从文本提示和单视图图像生成 3D 高斯点云的生成框架。
DiffSplat 是一种创新的 3D 生成技术,能够从文本提示和单视图图像快速生成 3D 高斯点云。该技术通过利用大规模预训练的文本到图像扩散模型,实现了高效的 3D 内容生成。它解决了传统 3D 生成方法中数据集有限和无法有效利用 2D 预训练模型的问题,同时保持了 3D 一致性。DiffSplat 的主要优点包括高效的生成速度(1~2 秒内完成)、高质量的 3D 输出以及对多种输入条件的支持。该模型在学术研究和工业应用中具有广泛前景,尤其是在需要快速生成高质量 3D 模型的场景中。
文本到图像扩散模型的美学质量提升工具
VMix是一种用于提升文本到图像扩散模型美学质量的技术,通过创新的条件控制方法——价值混合交叉注意力,系统性地增强图像的美学表现。VMix作为一个即插即用的美学适配器,能够在保持视觉概念通用性的同时提升生成图像的质量。VMix的关键洞见是通过设计一种优越的条件控制方法来增强现有扩散模型的美学表现,同时保持图像与文本的对齐。VMix足够灵活,可以应用于社区模型,以实现更好的视觉性能,无需重新训练。
自适应条件选择,提升文本到图像生成控制力
DynamicControl是一个用于提升文本到图像扩散模型控制力的框架。它通过动态组合多样的控制信号,支持自适应选择不同数量和类型的条件,以更可靠和详细地合成图像。该框架首先使用双循环控制器,利用预训练的条件生成模型和判别模型,为所有输入条件生成初始真实分数排序。然后,通过多模态大型语言模型(MLLM)构建高效条件评估器,优化条件排序。DynamicControl联合优化MLLM和扩散模型,利用MLLM的推理能力促进多条件文本到图像任务,最终排序的条件输入到并行多控制适配器,学习动态视觉条件的特征图并整合它们以调节ControlNet,增强对生成图像的控制。
基于文本生成姿态并进一步生成图像的模型
text-to-pose是一个研究项目,旨在通过文本描述生成人物姿态,并利用这些姿态生成图像。该技术结合了自然语言处理和计算机视觉,通过改进扩散模型的控制和质量,实现了从文本到图像的生成。项目背景基于NeurIPS 2024 Workshop上发表的论文,具有创新性和前沿性。该技术的主要优点包括提高图像生成的准确性和可控性,以及在艺术创作和虚拟现实等领域的应用潜力。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
用于精确控制扩散模型中概念的低秩适配器
Concept Sliders 是一种用于精确控制扩散模型中概念的技术,它通过低秩适配器(LoRA)在预训练模型之上进行应用,允许艺术家和用户通过简单的文本描述或图像对来训练控制特定属性的方向。这种技术的主要优点是能够在不改变图像整体结构的情况下,对生成的图像进行细微调整,如眼睛大小、光线等,从而实现更精细的控制。它为艺术家提供了一种新的创作表达方式,同时解决了生成模糊或扭曲图像的问题。
3D纹理生成技术,根据文本描述合成3D纹理
TexGen是一个创新的多视角采样和重采样框架,用于根据任意文本描述合成3D纹理。它利用预训练的文本到图像的扩散模型,通过一致性视图采样和注意力引导的多视角采样策略,以及噪声重采样技术,显著提高了3D对象的纹理质量,具有高度的视角一致性和丰富的外观细节。
异步去噪并行化扩散模型
AsyncDiff 是一种用于并行化扩散模型的异步去噪加速方案,它通过将噪声预测模型分割成多个组件并分配到不同的设备上,实现了模型的并行处理。这种方法显著减少了推理延迟,同时对生成质量的影响很小。AsyncDiff 支持多种扩散模型,包括 Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、ControlNet、Stable Video Diffusion 和 AnimateDiff。
基于文本的视频编辑技术,使用时空切片。
Slicedit是一种零样本视频编辑技术,它利用文本到图像的扩散模型,并结合时空切片来增强视频编辑中的时序一致性。该技术能够保留原始视频的结构和运动,同时符合目标文本描述。通过广泛的实验,证明了Slicedit在编辑真实世界视频方面具有明显优势。
一个统一的文本到任意模态生成框架
Lumina-T2X是一个先进的文本到任意模态生成框架,它能够将文本描述转换为生动的图像、动态视频、详细的多视图3D图像和合成语音。该框架采用基于流的大型扩散变换器(Flag-DiT),支持高达7亿参数,并能扩展序列长度至128,000个标记。Lumina-T2X集成了图像、视频、3D对象的多视图和语音频谱图到一个时空潜在标记空间中,可以生成任何分辨率、宽高比和时长的输出。
通过LLM增强语义对齐的扩散模型适配器
ELLA(Efficient Large Language Model Adapter)是一种轻量级方法,可将现有的基于CLIP的扩散模型配备强大的LLM。ELLA提高了模型的提示跟随能力,使文本到图像模型能够理解长文本。我们设计了一个时间感知语义连接器,从预训练的LLM中提取各种去噪阶段的时间步骤相关条件。我们的TSC动态地适应了不同采样时间步的语义特征,有助于在不同的语义层次上对U-Net进行冻结。ELLA在DPG-Bench等基准测试中表现优越,尤其在涉及多个对象组合、不同属性和关系的密集提示方面表现出色。
官方实现的自纠正LLM控制的扩散模型
SLD是一个自纠正的LLM控制的扩散模型框架,它通过集成检测器增强生成模型,以实现精确的文本到图像对齐。SLD框架支持图像生成和精细编辑,并且与任何图像生成器兼容,如DALL-E 3,无需额外训练或数据。
升级扩散模型插件通用兼容性
X-Adapter是一个通用升级工具,可以使预训练的插件模块(例如ControlNet、LoRA)直接与升级的文本到图像扩散模型(例如SD-XL)配合使用,无需进一步重新训练。通过训练额外的网络来控制冻结的升级模型,X-Adapter保留旧模型的连接器,并添加可训练的映射层以连接不同版本模型的解码器进行特征重映射。重映射的特征将作为升级模型的引导。为了增强X-Adapter的引导能力,我们采用空文本训练策略。在训练后,我们还引入了两阶段去噪策略,以调整X-Adapter和升级模型的初始潜变量。X-Adapter展示了与各种插件的通用兼容性,并使不同版本的插件能够共同工作,从而扩展了扩散社区的功能。我们进行了大量实验证明,X-Adapter可能在升级的基础扩散模型中有更广泛的应用。
MakeAnything 是一个用于多领域程序化序列生成的扩散变换器模型。
MakeAnything 是一个基于扩散变换器的模型,专注于多领域程序化序列生成。该技术通过结合先进的扩散模型和变换器架构,能够生成高质量的、逐步的创作序列,如绘画、雕塑、图标设计等。其主要优点在于能够处理多种领域的生成任务,并且可以通过少量样本快速适应新领域。该模型由新加坡国立大学 Show Lab 团队开发,目前以开源形式提供,旨在推动多领域生成技术的发展。
Pippo 是一个从单张照片生成高分辨率多人视角视频的生成模型。
Pippo 是由 Meta Reality Labs 和多所高校合作开发的生成模型,能够从单张普通照片生成高分辨率的多人视角视频。该技术的核心优势在于无需额外输入(如参数化模型或相机参数),即可生成高质量的 1K 分辨率视频。它基于多视角扩散变换器架构,具有广泛的应用前景,如虚拟现实、影视制作等。Pippo 的代码已开源,但不包含预训练权重,用户需要自行训练模型。
On-device Sora 是一个基于扩散模型的移动设备端文本到视频生成项目。
On-device Sora 是一个开源项目,旨在通过线性比例跳跃(LPL)、时间维度标记合并(TDTM)和动态加载并发推理(CI-DL)等技术,实现在移动设备(如 iPhone 15 Pro)上高效的视频生成。该项目基于 Open-Sora 模型开发,能够根据文本输入生成高质量视频。其主要优点包括高效性、低功耗和对移动设备的优化。该技术适用于需要在移动设备上快速生成视频内容的场景,如短视频创作、广告制作等。项目目前开源,用户可以免费使用。
一种用于控制视频扩散模型运动模式的高效方法,支持运动模式的自定义和迁移。
Go with the Flow 是一种创新的视频生成技术,通过使用扭曲噪声代替传统的高斯噪声,实现了对视频扩散模型运动模式的高效控制。该技术无需对原始模型架构进行修改,即可在不增加计算成本的情况下,实现对视频中物体和相机运动的精确控制。其主要优点包括高效性、灵活性和可扩展性,能够广泛应用于图像到视频生成、文本到视频生成等多种场景。该技术由 Netflix Eyeline Studios 等机构的研究人员开发,具有较高的学术价值和商业应用潜力,目前开源免费提供给公众使用。
基于Diffusion的文本到图像生成模型,专注于时尚模特摄影风格图像生成
Fashion-Hut-Modeling-LoRA是一个基于Diffusion技术的文本到图像生成模型,主要用于生成时尚模特的高质量图像。该模型通过特定的训练参数和数据集,能够根据文本提示生成具有特定风格和细节的时尚摄影图像。它在时尚设计、广告制作等领域具有重要应用价值,能够帮助设计师和广告商快速生成创意概念图。模型目前仍在训练阶段,可能存在一些生成效果不佳的情况,但已经展示了强大的潜力。该模型的训练数据集包含14张高分辨率图像,使用了AdamW优化器和constant学习率调度器等参数,训练过程注重图像的细节和质量。
一款基于Midjourney风格的文本到图像生成模型,专注于高分辨率和写实风格的图像创作。
Flux-Midjourney-Mix2-LoRA 是一款基于深度学习的文本到图像生成模型,旨在通过自然语言描述生成高质量的图像。该模型基于Diffusion架构,结合了LoRA技术,能够实现高效的微调和风格化图像生成。其主要优点包括高分辨率输出、多样化的风格支持以及对复杂场景的出色表现能力。该模型适用于需要高质量图像生成的用户,如设计师、艺术家和内容创作者,能够帮助他们快速实现创意构思。
TokenVerse 是一种基于预训练文本到图像扩散模型的多概念个性化方法。
TokenVerse 是一种创新的多概念个性化方法,它利用预训练的文本到图像扩散模型,能够从单张图像中解耦复杂的视觉元素和属性,并实现无缝的概念组合生成。这种方法突破了现有技术在概念类型或广度上的限制,支持多种概念,包括物体、配饰、材质、姿势和光照等。TokenVerse 的重要性在于其能够为图像生成领域带来更灵活、更个性化的解决方案,满足用户在不同场景下的多样化需求。目前,TokenVerse 的代码尚未公开,但其在个性化图像生成方面的潜力已经引起了广泛关注。
X-Dyna是一种基于扩散模型的零样本人类图像动画生成技术。
X-Dyna是一种创新的零样本人类图像动画生成技术,通过将驱动视频中的面部表情和身体动作迁移到单张人类图像上,生成逼真且富有表现力的动态效果。该技术基于扩散模型,通过Dynamics-Adapter模块,将参考外观上下文有效整合到扩散模型的空间注意力中,同时保留运动模块合成流畅复杂动态细节的能力。它不仅能够实现身体姿态控制,还能通过本地控制模块捕捉与身份无关的面部表情,实现精确的表情传递。X-Dyna在多种人类和场景视频的混合数据上进行训练,能够学习物理人体运动和自然场景动态,生成高度逼真和富有表现力的动画。
Hunyuan3D 2.0 是腾讯推出的高分辨率 3D 资产生成系统,基于大规模扩散模型。
Hunyuan3D 2.0 是腾讯推出的一种先进大规模 3D 合成系统,专注于生成高分辨率纹理化的 3D 资产。该系统包括两个基础组件:大规模形状生成模型 Hunyuan3D-DiT 和大规模纹理合成模型 Hunyuan3D-Paint。它通过解耦形状和纹理生成的难题,为用户提供了灵活的 3D 资产创作平台。该系统在几何细节、条件对齐、纹理质量等方面超越了现有的开源和闭源模型,具有极高的实用性和创新性。目前,该模型的推理代码和预训练模型已开源,用户可以通过官网或 Hugging Face 空间快速体验。
NeuralSVG:从文本提示生成矢量图形的隐式表示方法。
NeuralSVG是一种用于从文本提示生成矢量图形的隐式神经表示方法。它受到神经辐射场(NeRFs)的启发,将整个场景编码到一个小的多层感知器(MLP)网络的权重中,并使用分数蒸馏采样(SDS)进行优化。该方法通过引入基于dropout的正则化技术,鼓励生成的SVG具有分层结构,使每个形状在整体场景中具有独立的意义。此外,其神经表示还提供了推理时控制的优势,允许用户根据提供的输入动态调整生成的SVG,如颜色、宽高比等,且只需一个学习到的表示。通过广泛的定性和定量评估,NeuralSVG在生成结构化和灵活的SVG方面优于现有方法。该模型由特拉维夫大学和MIT CSAIL的研究人员共同开发,目前代码尚未公开。
一种支持多种视频生成控制任务的统一架构模型。
Diffusion as Shader (DaS) 是一种创新的视频生成控制模型,旨在通过3D感知的扩散过程实现对视频生成的多样化控制。该模型利用3D跟踪视频作为控制输入,能够在统一的架构下支持多种视频控制任务,如网格到视频生成、相机控制、运动迁移和对象操作等。DaS的主要优势在于其3D感知能力,能够有效提升生成视频的时间一致性,并在短时间内通过少量数据微调即可展现出强大的控制能力。该模型由香港科技大学等多所高校的研究团队共同开发,旨在推动视频生成技术的发展,为影视制作、虚拟现实等领域提供更为灵活和高效的解决方案。
基于孪生多模态扩散变换器的创意布局到图像生成技术
CreatiLayout是一种创新的布局到图像生成技术,利用孪生多模态扩散变换器(Siamese Multimodal Diffusion Transformer)来实现高质量和细粒度可控的图像生成。该技术能够精确渲染复杂的属性,如颜色、纹理、形状、数量和文本,适用于需要精确布局和图像生成的应用场景。其主要优点包括高效的布局引导集成、强大的图像生成能力和大规模数据集的支持。CreatiLayout由复旦大学和字节跳动公司联合开发,旨在推动图像生成技术在创意设计领域的应用。
无需训练的迭代框架,用于长篇故事可视化
Story-Adapter是一个无需训练的迭代框架,专为长篇故事可视化设计。它通过迭代范式和全局参考交叉注意力模块,优化图像生成过程,保持故事中语义的连贯性,同时减少计算成本。该技术的重要性在于它能够在长篇故事中生成高质量、细节丰富的图像,解决了传统文本到图像模型在长故事可视化中的挑战,如语义一致性和计算可行性。
© 2025 AIbase 备案号:闽ICP备08105208号-14