需求人群:
"DVT适用于图像去噪、图像特征提取、视觉任务性能改善等场景。"
使用场景示例:
图像去噪:使用DVT模型对包含噪声的图像进行去噪处理。
图像特征提取:利用DVT提取干净的视觉特征用于图像识别任务。
视觉任务性能改善:将DVT应用于改善基于Transformer的视觉模型在语义和几何任务中的性能。
产品特色:
解剖ViT输出
引入可学习的去噪器
提取无噪声的特征
改善基于Transformer的模型的性能
不需要重新训练现有的预训练ViTs
浏览量:57
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
一款基于深度学习的在线图像抠图工具
image-matting是一个基于深度学习的在线图像抠图工具,能够实现人像及通用场景下的图像抠图,可提取图像中的主体物体并输出对应的背景图、前景图及遮罩。该工具使用了模型堂的cv_unet_image-matting和cv_unet_universal-matting模型,实现了高质量的图像抠图效果。该工具提供了简单便捷的在线抠图体验,支持图片上传抠图及URL抠图两种方式,可广泛应用于图像编辑、电商平台中的人像处理等场景中。
一个基于深度学习的图像和视频描述模型。
Describe Anything 模型(DAM)能够处理图像或视频的特定区域,并生成详细描述。它的主要优点在于可以通过简单的标记(点、框、涂鸦或掩码)来生成高质量的本地化描述,极大地提升了计算机视觉领域的图像理解能力。该模型由 NVIDIA 和多所大学联合开发,适合用于研究、开发和实际应用中。
音频处理和生成的深度学习库
AudioCraft 是一个用于音频处理和生成的 PyTorch 库。它包含了两个最先进的人工智能生成模型:AudioGen 和 MusicGen,可以生成高质量的音频。AudioCraft 还提供了 EnCodec 音频压缩 / 分词器和 Multi Band Diffusion 解码器等功能。该库适用于音频生成的深度学习研究。
数学作为黑箱的深度学习模型
MathBlackBox是一个深度学习模型,旨在探索数学问题解决的黑箱方法。它使用VLLM或其他OpenAI兼容的方法,通过Huggingface工具包和OpenAI进行推理,支持在Slurm环境下运行,并能够处理多种数据集。该项目目前处于早期阶段,需要充分测试后才能部署到实际产品中。
从零开始学习深度学习,实现GPT模型
zero_to_gpt是一个旨在帮助用户从零基础学习深度学习,并最终实现训练自己的GPT模型的教程。随着人工智能技术走出实验室并广泛应用于各行各业,社会对于能够理解并应用AI技术的人才需求日益增长。本教程结合理论与实践,通过解决实际问题(如天气预测、语言翻译等)来深入讲解深度学习的理论基础,如梯度下降和反向传播。课程内容从基础的神经网络架构和训练方法开始,逐步深入到复杂主题,如变换器、GPU编程和分布式训练。
OMG是一个基于深度学习的图像超分辨率工具
OMG(Once More Generalization)是一个开源的图像超分辨率工具,它利用深度学习技术来提高图像的分辨率。该项目旨在通过AI模型增强图像质量,使其在放大后仍然保持清晰和细腻。
深度学习天气预测模型
GraphCast是由Google DeepMind开发的深度学习模型,专注于全球中期天气预报。该模型通过先进的机器学习技术,能够预测天气变化,提高预报的准确性和速度。GraphCast模型在科学研究中发挥重要作用,有助于更好地理解和预测天气模式,对气象学、农业、航空等多个领域具有重要价值。
图像处理与存储
Cloudinary是一款图像处理与存储产品,提供丰富的功能和优势。它可以进行图像填充、移除、替换、重新上色、恢复以及图像字幕生成等操作。Cloudinary定价灵活,适用于各种不同的用户需求。它主要用于图像处理和存储,可以帮助用户优化图像,提升网站性能。
一款由XTuner优化的LLaVA模型,结合了图像和文本处理能力。
llava-llama-3-8b-v1_1是一个由XTuner优化的LLaVA模型,它基于meta-llama/Meta-Llama-3-8B-Instruct和CLIP-ViT-Large-patch14-336,并通过ShareGPT4V-PT和InternVL-SFT进行了微调。该模型专为图像和文本的结合处理而设计,具有强大的多模态学习能力,适用于各种下游部署和评估工具包。
BEN2是一个基于深度学习的图像分割模型,专注于背景擦除和前景提取。
BEN2(Background Erase Network)是一个创新的图像分割模型,采用了Confidence Guided Matting(CGM)流程。它通过一个细化网络专门处理模型置信度较低的像素,从而实现更精确的抠图效果。BEN2在头发抠图、4K图像处理、目标分割和边缘细化方面表现出色。其基础模型是开源的,用户可以通过API或Web演示免费试用完整模型。该模型训练数据包括DIS5k数据集和22K专有分割数据集,能够满足多种图像处理需求。
深度学习API,简单、灵活、强大
Keras是一个为人类设计的API,遵循最佳实践,简化认知负荷,提供一致而简单的API,最大限度地减少常见用例所需的用户操作次数,并提供清晰而可操作的错误信息。Keras旨在为任何希望推出基于机器学习的应用程序的开发人员提供不公平的优势。Keras专注于调试速度、代码优雅性和简洁性、可维护性和可部署性。使用Keras,您的代码库更小,更易读,更易于迭代。您的模型在XLA编译和Autograph优化的加持下运行更快,并且更容易在每个平台(服务器、移动设备、浏览器、嵌入式设备)上部署。
提供干净的视觉特征
去噪视觉变换器(Denoising Vision Transformers,DVT)是一种针对视觉变换器(ViTs)的新型噪声模型。通过解剖ViT输出并引入可学习的去噪器,DVT能够提取无噪声的特征,从而在离线应用和在线功能中显著改善基于Transformer的模型的性能。DVT不需要重新训练现有的预训练ViTs,可立即应用于任何基于Transformer的架构。通过在多个数据集上进行广泛评估,我们发现DVT在语义和几何任务中持续显著改善现有的最先进通用模型(例如,+3.84 mIoU)。我们希望我们的研究能够鼓励重新评估ViT设计,特别是关于位置嵌入的天真使用。
统一的深度学习训练框架
AXLearn是Apple基于JAX和XLA构建的深度学习库,采用面向对象的方式解决软件工程在大规模深度学习模型开发中的挑战。它的配置系统允许用户从可重用的构建块中组合模型,并与其他库(如Flax和Hugging Face transformers)集成。AXLearn旨在扩展训练规模,支持数百亿参数的模型在数千个加速器上高效训练,适合在公有云上部署。它还采用全局计算范式,允许用户描述全局虚拟计算机上的计算,而不是单个加速器。AXLearn支持广泛的应用,包括自然语言处理、计算机视觉和语音识别,并包含用于训练最先进模型的基线配置。
使用线条生成深度风格图像
Line2Depth SD 1.5是一个模型,可以利用像Canny、线条、Softedge等控制网络,仅通过线条创建具有深度感的图像。在提示中添加'depth, 3d'。Lora文件名后的数字表示合并的Lora数量,每个将产生不同的结果,因此请选择一个效果较好的。
利用强化学习提升扩散大语言模型的推理能力。
该模型通过强化学习和高质量推理轨迹的掩蔽自监督微调,实现了对扩散大语言模型的推理能力的提升。此技术的重要性在于它能够优化模型的推理过程,减少计算成本,同时保证学习动态的稳定性。适合希望在写作和推理任务中提升效率的用户。
图像条件扩散模型的微调工具
diffusion-e2e-ft是一个开源的图像条件扩散模型微调工具,它通过微调预训练的扩散模型来提高特定任务的性能。该工具支持多种模型和任务,如深度估计和法线估计,并提供了详细的使用说明和模型检查点。它在图像处理和计算机视觉领域具有重要应用,能够显著提升模型在特定任务上的准确性和效率。
先进的单目深度估计模型
Depth Anything V2 是一个经过改进的单目深度估计模型,它通过使用合成图像和大量未标记的真实图像进行训练,提供了比前一版本更精细、更鲁棒的深度预测。该模型在效率和准确性方面都有显著提升,速度比基于Stable Diffusion的最新模型快10倍以上。
基于《Factorio》游戏的大语言模型测试与学习环境
Factorio Learning Environment(FLE)是基于《Factorio》游戏构建的新型框架,用于评估大型语言模型(LLMs)在长期规划、程序合成和资源优化方面的能力。随着LLMs逐渐饱和现有基准测试,FLE提供了新的开放式评估方式。它的重要性在于能让研究人员更全面、深入地了解LLMs的优势与不足。主要优点是提供了开放式且难度呈指数级增长的挑战,拥有结构化任务和开放式任务两种评估协议。该项目由Jack Hopkins等人开发,以开源形式发布,免费使用,定位是推动AI研究人员对复杂、开放式领域中智能体能力的研究。
开源文本到图像生成模型
AuraFlow v0.3是一个完全开源的基于流的文本到图像生成模型。与之前的版本AuraFlow-v0.2相比,该模型经过了更多的计算训练,并在美学数据集上进行了微调,支持各种宽高比,宽度和高度可达1536像素。该模型在GenEval上取得了最先进的结果,目前处于beta测试阶段,正在不断改进中,社区反馈非常重要。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
基于低秩参数优化的模型控制技术
Control-LoRA 是通过在 ControlNet 上添加低秩参数优化来实现的,为消费级 GPU 提供了更高效、更紧凑的模型控制方法。该产品包含多个 Control-LoRA 模型,包括 MiDaS 和 ClipDrop 深度估计、Canny 边缘检测、照片和素描上色、Revision 等功能。Control-LoRA 模型经过训练,可以在不同的图像概念和纵横比上生成高质量的图像。
深度学习算法与大模型面试指南,持续更新的面试题目集合。
DeepLearing-Interview-Awesome-2024 是一个开源的面试题目集合项目,专注于深度学习算法和大模型领域的面试准备。该项目由社区成员共同维护,旨在提供最新的面试题目和答案解析,帮助求职者和研究人员深入理解深度学习领域的前沿技术和应用。它包含了丰富的面试题目,覆盖了大语言模型、视觉模型、通用问题等多个方面,是准备深度学习相关职位的宝贵资源。
© 2025 AIbase 备案号:闽ICP备08105208号-14