需求人群:
"Cargoship适用于需要将AI集成到软件中的用户,无需机器学习知识即可使用。"
使用场景示例:
一款智能翻译软件使用Cargoship提供的文本处理模型
一款图像识别软件使用Cargoship提供的图像识别模型
一款语音转文字软件使用Cargoship提供的音频转录模型
产品特色:
提供预训练的AI模型
易于使用的API
支持文本处理、文本生成、图像识别、图像生成、音频转录等多个领域
模型集合不断增长
保证与AI领域的发展保持同步
用户可以选择自己托管模型或者获取个人API密钥
浏览量:51
提供多种预训练模型,支持多维度筛选,助力AI模型应用与开发。
该平台是一个专注于AI预训练模型的资源平台,整合了大量不同类型、规模和应用场景的预训练模型。其重要性在于为AI开发者和研究人员提供了便捷的模型获取渠道,降低了模型开发的门槛。主要优点包括模型分类细致、多维度筛选功能强大、信息展示详细且提供智能推荐。产品背景是随着AI技术的发展,对预训练模型的需求日益增长,平台应运而生。平台主要定位为AI模型资源平台,部分模型免费商用,部分可能需要付费,具体价格因模型而异。
基于 Transformer 的预训练语言模型系列
Qwen1.5 是基于 Transformer 架构的解码器语言模型系列,包括不同规模的模型。具有 SwiGLU 激活、注意力 QKV 偏置、组查询注意力等特性。支持多种自然语言和代码。推荐进行后续训练,如 SFT、RLHF 等。定价免费。
谷歌推出的开源预训练语言模型
Gemma-2b是谷歌推出的开源预训练语言模型系列,提供了多个不同规模的变体。它可以生成高质量的文本,广泛应用于问答、摘要、推理等领域。相比其他同类模型,它模型规模较小,可以部署在不同的硬件环境中。Gemma系列追求安全、高效的人工智能技术,使更多研究者和开发者可以接触前沿的语言模型技术。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
大规模自回归图像模型预训练
这篇论文介绍了AIM,这是一组使用自回归目标进行预训练的视觉模型。这些模型受其文本对应物,即大型语言模型(LLMs)的启发,并表现出类似的扩展特性。具体来说,我们强调了两个关键发现:(1)视觉特征的性能随着模型容量和数据量的增加而提高,(2)目标函数的价值与模型在下游任务上的性能相关。我们通过在20亿张图像上对70亿参数的AIM进行预训练,实现了在ImageNet-1k上使用冻结主干达到84.0%的准确率。有趣的是,即使在这个规模上,我们观察到性能没有饱和的迹象,这表明AIM可能代表了训练大规模视觉模型的新前沿。AIM的预训练类似于LLMs的预训练,并不需要任何图像特定的策略来稳定大规模训练。
多语言预训练语言模型
「书生·浦语2.0」InternLM2是一个面向中文和英文的大型多语言预训练语言模型。它具有语言理解、自然语言生成、多模式推理、代码理解等强大的能力。模型采用Transformer架构并进行海量数据的预训练,在长文本理解、对话、数学运算等多个方向上都达到了业界领先水平。该系列模型包含多种规模,用户可以选择合适的模型进行下游任务微调或构建聊天机器人等应用。
基于语言模型架构的预训练时间序列预测模型
Chronos是一系列基于语言模型架构的预训练时间序列预测模型。时间序列通过缩放和量化转换为一系列标记,然后使用交叉熵损失训练语言模型。训练完成后,通过给定历史上下文采样多个未来轨迹,获得概率性预测。Chronos模型已经在大量公开可用的时间序列数据和使用高斯过程生成的合成数据上进行了训练。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
开源的中英双语预训练语言模型
LingoWhale-8B是一个开源的大规模中英双语预训练语言模型,具有强大的自然语言理解和生成能力。它通过在海量高质量中英文数据上进行预训练,可以完成长文本的理解和多轮交互。该模型采用Transformer架构,参数量达80亿。它在多个中文和英文公开基准测试上都取得了领先的效果。LingoWhale-8B完全开放给学术研究使用,个人开发者可以免费用于商业用途。该模型可以广泛应用于聊天机器人、知识问答、文本生成等领域。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
通过API获取高品质Yi系列大模型的开放平台
零一万物大模型开放平台是一个通过API调用获取高品质Yi系列大模型的平台。Yi系列模型基于零一万物的前沿科研成果和高品质数据训练而成,曾在多个权威榜单中获得SOTA表现。主要产品包括yi-34b-chat-0205、yi-34b-chat-200k和yi-vl-plus三种模型。yi-34b-chat-0205是一款优化版聊天模型,指令遵循能力提升近30%,回复延迟大幅降低,适用于聊天、问答、对话等场景。yi-34b-chat-200k支持200K超长上下文,可处理约20万到30万汉字内容,适用于文档理解、数据分析和跨领域知识应用。yi-vl-plus支持高分辨率图片输入,具备图像问答、图表理解、OCR等能力,适用于对复杂图像内容进行分析、识别和理解。该平台的API优势包括推理速度快、与OpenAI API完全兼容。定价方面,新注册用户可获赠60元试用额度,yi-34b-chat-0205单价为2.5元/百万token,yi-34b-chat-200k单价为12元/次,yi-vl-plus单价为6元/百万token。
文档智能的视觉引导生成文本布局预训练模型
ViTLP是一个视觉引导的生成文本布局预训练模型,旨在提高文档智能处理的效率和准确性。该模型结合了OCR文本定位和识别功能,能够在文档图像上进行快速准确的文本检测和识别。ViTLP模型的预训练版本ViTLP-medium(380M参数)在计算资源和预训练数据集规模的限制下,提供了一个平衡的解决方案,既保证了模型的性能,又优化了推理速度和内存使用。ViTLP的推理速度在Nvidia 4090上处理一页文档图像通常在5到10秒内,与大多数OCR引擎相比具有竞争力。
基于大规模数据的高质量信息抽取模型
雅意信息抽取大模型(YAYI-UIE)由中科闻歌算法团队研发,是一款在百万级人工构造的高质量信息抽取数据上进行指令微调的模型。它能够统一训练信息抽取任务,包括命名实体识别(NER)、关系抽取(RE)和事件抽取(EE),覆盖了通用、安全、金融、生物、医疗、商业等多个场景的结构化抽取。该模型的开源旨在促进中文预训练大模型开源社区的发展,并通过开源共建雅意大模型生态。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
汇总和比较全球主要AI模型提供商的价格信息
AIGCRank大语言模型API价格对比是一个专门汇总和比较全球主要AI模型提供商的价格信息的工具。它为用户提供最新的大语言模型(LLM)的价格数据,包括一些免费的AI大模型API。通过这个平台,用户可以轻松查找和比较OpenAI、Claude、Mixtral、Kimi、星火大模型、通义千问、文心一语、Llama 3、GPT-4、AWS和Google等国内外主要API提供商的最新价格,确保找到最适合自己项目的模型定价。
预训练T5模型,采用段落破坏和替换标记检测
SpacTor是一种新的训练程序,包括(1)结合了段落破坏(SC)和标记替换检测(RTD)的混合目标,以及(2)一个两阶段课程,该课程在初始tau次迭代中优化混合目标,然后过渡到标准的SC损失。我们在多种NLP任务上进行了实验,使用编码器-解码器架构(T5),SpacTor-T5在下游性能方面与标准的SC预训练相当,同时减少了50%的预训练迭代次数和40%的总FLOPs。另外,在相同的计算预算下,我们发现SpacTor能够显著提高下游基准性能。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
新一代多语言预训练模型,性能卓越。
Qwen2是一系列经过预训练和指令调整的模型,支持多达27种语言,包括英语和中文。这些模型在多个基准测试中表现出色,特别是在编码和数学方面有显著提升。Qwen2模型的上下文长度支持高达128K个token,适用于处理长文本任务。此外,Qwen2-72B-Instruct模型在安全性方面与GPT-4相当,显著优于Mistral-8x22B模型。
新一代开源预训练模型,支持多语言和高级功能
GLM-4-9B是智谱AI推出的新一代预训练模型,属于GLM-4系列中的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中表现优异,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。此外,还支持包括日语、韩语、德语在内的26种语言,并有支持1M上下文长度的模型版本。
无需机器学习知识,为你的软件添加人工智能
Cargoship是一个AI模型集合,提供预训练的模型和易于使用的API,无需机器学习知识即可将AI集成到你的软件中。Cargoship提供的模型包括文本处理、文本生成、图像识别、图像生成、音频转录等多个领域,用户可以选择自己需要的模型。Cargoship的模型集合不断增长,同时也保证与AI领域的发展保持同步。用户可以选择自己托管模型或者获取个人API密钥。
一个基于稀疏专家模型的大型语言模型
Mixtral-8x22B是一个预训练的生成式稀疏专家语言模型。它由Mistral AI团队开发,旨在推进人工智能的开放发展。该模型具有141B个参数,支持多种优化部署方式,如半精度、量化等,以满足不同的硬件和应用场景需求。Mixtral-8x22B可以用于文本生成、问答、翻译等自然语言处理任务。
训练属于你的文本大模型,独立部署
Modihand是一个训练属于你的文本大模型的平台,无需专业知识,只需要准备好训练数据,即可训练出专属于你的文本大模型。内置市面上大多数的开源模型,支持多种微调训练方式,性价比高,独立可部署,推理 API 支持,提供更多问题解决支持。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
新一代开源预训练模型,支持多轮对话和多语言。
GLM-4-9B-Chat-1M 是智谱 AI 推出的新一代预训练模型,属于 GLM-4 系列的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中展现出较高的性能。该模型不仅支持多轮对话,还具备网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并特别推出了支持1M上下文长度的模型版本,适合需要处理大量数据和多语言环境的开发者和研究人员使用。
让您的模型定制更加个性化
FABRIC 是一个通过迭代反馈来个性化定制扩散模型的工具。它提供了一种简单的方法来根据用户的反馈来改进模型的性能。用户可以通过迭代的方式与模型进行交互,并通过反馈来调整模型的预测结果。FABRIC 还提供了丰富的功能,包括模型训练、参数调整和性能评估。它的定价根据用户的使用情况而定,可满足不同用户的需求。
字节跳动自研大模型,提供多模态能力
豆包大模型是字节跳动推出的自研大模型,通过内部50+业务场景实践验证,每日万亿级tokens大使用量持续打磨,提供多模态能力,以优质模型效果为企业打造丰富的业务体验。产品家族包括多种模型,如通用模型、视频生成、文生图、图生图、同声传译等,满足不同业务需求。
TinyLlama项目旨在在3万亿令牌上预训练一个1.1B Llama模型。通过一些适当的优化,我们可以在“仅”90天内使用16个A100-40G GPU完成。训练已于2023-09-01开始。
TinyLlama项目旨在在3万亿令牌上预训练一个1.1B Llama模型。通过一些适当的优化,我们可以在“仅”90天内使用16个A100-40G GPU完成。训练已于2023-09-01开始。我们采用了与Llama 2完全相同的架构和分词器。这意味着TinyLlama可以在许多建立在Llama基础上的开源项目中使用。此外,TinyLlama只有1.1B个参数,紧凑性使其能够满足许多对计算和内存占用有限的应用需求。
© 2025 AIbase 备案号:闽ICP备08105208号-14