浏览量:102
最新流量情况
月访问量
3461.98k
平均访问时长
00:06:03
每次访问页数
5.76
跳出率
31.19%
流量来源
直接访问
58.83%
自然搜索
29.57%
邮件
0.07%
外链引荐
4.05%
社交媒体
7.33%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
6.55%
德国
6.92%
西班牙
4.53%
印度
5.87%
美国
15.31%
深度学习天气预测模型
GraphCast是由Google DeepMind开发的深度学习模型,专注于全球中期天气预报。该模型通过先进的机器学习技术,能够预测天气变化,提高预报的准确性和速度。GraphCast模型在科学研究中发挥重要作用,有助于更好地理解和预测天气模式,对气象学、农业、航空等多个领域具有重要价值。
深度学习文档解析API
Cradl AI是一个专为开发者和具有高级数据捕获需求的企业设计的文档解析API。利用深度学习的强大能力,快速构建、训练和部署先进的文档解析模型,无需具备机器学习经验。提供灵活的定价和部署选项,适用于各种场景。
强大的通用预测学习
通用预测学习器是一种利用元学习的强大方法,能够快速从有限数据中学习新任务。通过广泛接触不同的任务,可以获得通用的表示,从而实现通用问题解决。本产品探索了将最强大的通用预测器——Solomonoff归纳(SI)——通过元学习的方式进行摊销的潜力。我们利用通用图灵机(UTM)生成训练数据,让网络接触到广泛的模式。我们提供了UTM数据生成过程和元训练协议的理论分析。我们使用不同复杂度和普适性的算法数据生成器对神经架构(如LSTM、Transformer)进行了全面的实验。我们的结果表明,UTM数据是元学习的宝贵资源,可以用来训练能够学习通用预测策略的神经网络。
高级API,简化TensorFlow深度学习
TFLearn是一个基于TensorFlow的深度学习库,提供了一个高级API,用于实现深度神经网络。它具有易于使用和理解的高级API,快速的原型设计功能,全面的TensorFlow透明性,并支持最新的深度学习技术。TFLearn支持卷积网络、LSTM、双向RNN、批量归一化、PReLU、残差网络、生成网络等模型。可以用于图像分类、序列生成等任务。
大规模基础模型,革新大气预测
Aurora 是由微软研究院开发的大规模基础模型,它利用超过百万小时的多样化天气和气候数据进行训练。Aurora 利用基础模型方法的优势,为各种大气预测问题提供操作性预测,包括那些训练数据有限、变量异质性和极端事件的问题。Aurora 能在不到一分钟内生成5天的全球空气污染预测和10天的高分辨率天气预报,性能超越了最先进的传统模拟工具和最好的专业深度学习模型。这些结果表明,基础模型可以改变环境预测。
从零开始学习深度学习,实现GPT模型
zero_to_gpt是一个旨在帮助用户从零基础学习深度学习,并最终实现训练自己的GPT模型的教程。随着人工智能技术走出实验室并广泛应用于各行各业,社会对于能够理解并应用AI技术的人才需求日益增长。本教程结合理论与实践,通过解决实际问题(如天气预测、语言翻译等)来深入讲解深度学习的理论基础,如梯度下降和反向传播。课程内容从基础的神经网络架构和训练方法开始,逐步深入到复杂主题,如变换器、GPU编程和分布式训练。
深度学习API,简单、灵活、强大
Keras是一个为人类设计的API,遵循最佳实践,简化认知负荷,提供一致而简单的API,最大限度地减少常见用例所需的用户操作次数,并提供清晰而可操作的错误信息。Keras旨在为任何希望推出基于机器学习的应用程序的开发人员提供不公平的优势。Keras专注于调试速度、代码优雅性和简洁性、可维护性和可部署性。使用Keras,您的代码库更小,更易读,更易于迭代。您的模型在XLA编译和Autograph优化的加持下运行更快,并且更容易在每个平台(服务器、移动设备、浏览器、嵌入式设备)上部署。
深入理解深度学习的原理与应用
《Understanding Deep Learning》是一本深入探讨深度学习原理和应用的书籍。它提供了丰富的数学背景知识、监督学习、神经网络的构建与训练等深度学习领域的全面内容。书中提供的Python笔记本练习帮助读者通过实践来加深理解。此外,还有为教师提供的资源,包括图像、幻灯片和教辅材料。
简化机器学习和预测分析
Analyzr使机器学习和预测分析变得简单,为中型和企业客户提供B2B销售和营销分析。我们提供无代码界面,快速构建机器学习模型;采用零信任方法,用户数据经过编码和本地控制,保证安全;可扩展的托管Kubernetes集群,实现云端扩展性;全面托管,保证稳定运行和专属服务台;单独的API,不共享机密数据;输出结果反馈到本地系统,方便用户访问。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
统一的深度学习训练框架
AXLearn是Apple基于JAX和XLA构建的深度学习库,采用面向对象的方式解决软件工程在大规模深度学习模型开发中的挑战。它的配置系统允许用户从可重用的构建块中组合模型,并与其他库(如Flax和Hugging Face transformers)集成。AXLearn旨在扩展训练规模,支持数百亿参数的模型在数千个加速器上高效训练,适合在公有云上部署。它还采用全局计算范式,允许用户描述全局虚拟计算机上的计算,而不是单个加速器。AXLearn支持广泛的应用,包括自然语言处理、计算机视觉和语音识别,并包含用于训练最先进模型的基线配置。
提供AI边缘处理器,专为实现高性能深度学习应用而设计。
Hailo AI on the Edge Processors提供AI加速器和视觉处理器,支持边缘设备解决方案,旨在实现新时代的AI边缘处理和视频增强。产品定位于提供高性能深度学习应用,同时支持感知和视频增强。
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
深度学习领域的经典教材中文翻译
《深度学习》是一本由Simon J.D. Prince所著的深度学习领域的经典教材,MIT Press于2023年12月5日出版。本书涵盖了深度学习领域的许多关键概念,适合初学者和有经验的开发者阅读。本仓库提供了该书的中文翻译,翻译基于原书的最新版本,使用ChatGPT进行机翻并进行人工审核,确保翻译的准确性。
数学作为黑箱的深度学习模型
MathBlackBox是一个深度学习模型,旨在探索数学问题解决的黑箱方法。它使用VLLM或其他OpenAI兼容的方法,通过Huggingface工具包和OpenAI进行推理,支持在Slurm环境下运行,并能够处理多种数据集。该项目目前处于早期阶段,需要充分测试后才能部署到实际产品中。
基于深度学习的AI软件,将任何人脸照片生成达芬奇风格的肖像
DaVinciFace是一款基于深度学习的软件,使用生成对抗网络(GAN)技术,能够从任何人脸照片中生成达芬奇风格的肖像。具有超过5亿个训练参数的生成神经网络,仅需不到2分钟即可生成达芬奇风格的肖像。该软件可应用于艺术创作、娱乐等场景。免费生成的肖像带有logo,商业用途需要购买无logo的高分辨率版本。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
开源分布式深度学习工具
The Microsoft Cognitive Toolkit(CNTK)是一个开源的商业级分布式深度学习工具。它通过有向图描述神经网络的计算步骤,支持常见的模型类型,并实现了自动微分和并行计算。CNTK支持64位Linux和Windows操作系统,可以作为Python、C或C++程序的库使用,也可以通过其自身的模型描述语言BrainScript作为独立的机器学习工具使用。
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
一键完成整个数据科学流程,构建机器学习算法,解释结果和预测结果
Obviously AI是一个最快、最精确的无代码AI工具,让您能够在几分钟内从原始数据转变为行业领先的预测模型,而不是几个月。它包括构建突破性的AI模型、将模型部署到生产环境、监控模型性能、集成和共享预测数据以及专业支持等功能。通过Obviously AI,您可以节省复杂的AI模型构建时间,并获得整个数据科学团队的支持。
无代码机器学习平台,生成业务洞察和预测
Graphite Note是世界上最简单易用的无代码机器学习平台。它帮助用户在几分钟内生成业务洞察和预测,无需编码。通过Graphite Note,用户可以使用各种机器学习模型进行数据分析、预测和决策支持。平台提供直观的界面和易于使用的工具,使用户能够快速构建和训练模型,并将结果转化为实际的业务洞察。Graphite Note还提供了丰富的功能,包括数据可视化、特征工程、模型评估和优化等,以帮助用户充分利用机器学习的潜力。平台还支持多种数据源和格式,使用户能够灵活地处理和分析各种类型的数据。Graphite Note的定价灵活合理,适用于个人用户、小型团队和企业客户。无论您是数据科学家、业务分析师还是决策者,Graphite Note都是您实现业务洞察和预测的理想选择。
找到最佳的机器学习API,无需麻烦地进行请求和预测
数据端点是一个机器学习API市场,用户可以在其中找到最佳的机器学习API端点,并进行请求和预测,无需繁琐的操作。产品提供了各种功能,优势,定价和定位等信息。
最佳体育赛事预测 AI
Mysports.AI 是一款基于 AI 技术的最受信赖的体育赛事预测平台,提供准确、盈利的足球、美式足球、篮球、棒球等体育赛事预测。利用先进的机器学习算法和丰富的体育数据,Mysports.AI 帮助您做出明智的决策,提升您的体育投注体验。
AI预测寿命和死亡日期
Death Calculator AI使用先进的AI算法来估计可能的寿命,根据个人健康和生活方式因素。这个工具旨在提供用户如何生活方式选择、遗传因素和整体健康可能影响他们寿命的见解。
一站式深度学习解决方案
深度学习助手是一款集模型训练、数据处理和结果分析于一体的深度学习平台。它提供丰富的神经网络模型,可以帮助用户快速构建和训练自己的深度学习模型。同时,它还具备数据预处理功能,方便用户对数据进行清洗和转换。除此之外,深度学习助手还提供了强大的结果分析工具,帮助用户深入理解和优化模型效果。定价灵活合理,适用于个人开发者和企业用户。
© 2025 AIbase 备案号:闽ICP备08105208号-14