需求人群:
"目标受众是全球的开发者,特别是那些需要处理后台任务、长时间运行作业和无服务器架构的现代开发者。Trigger.dev通过提供无需管理服务器的背景工作平台,简化了开发流程,使得开发者可以专注于构建产品,而不必担心后台任务的复杂性。"
使用场景示例:
Supabase使用Trigger.dev重新定义现代开发者的背景工作。
Midday将Trigger.dev视为完全无服务器的关键组件,专注于构建产品。
DRPCRD利用Trigger.dev在WhatsApp上发送消息,运行具有自定义LLM工作流的数千个作业,并执行ETL流程。
P.S. Bridal的Martin Ruzicka表示,使用Trigger.dev后,不再需要使用ECS或Lambda设置一切。
产品特色:
无超时:允许编写简单可靠的代码,不会遇到超时问题。
按使用付费:只有在代码实际执行时才需要付费。
无需管理服务器:平台自动部署任务并处理扩展。
错误警报:当任务或部署失败时,通过电子邮件、Slack或Webhooks通知。
高级过滤:使用高级过滤选项快速找到运行记录,然后对多个任务应用批量操作。
版本控制:每次部署都是一个原子版本,确保已启动的任务不受代码更改的影响。
开发工具:包括Cron计划、实时运行状态更新、异步代码编写任务等。
生产工具:包括并发控制、多环境、自动重试、构建扩展等。
可观察性:包括实时仪表板、轻松测试任务、标签、高级运行过滤器等。
使用教程:
1. 访问Trigger.dev官网并注册账户。
2. 阅读快速入门指南,了解如何开始使用Trigger.dev。
3. 创建你的首个任务,编写异步代码并部署到Trigger.dev平台。
4. 利用平台提供的实时监控和日志功能,跟踪任务的执行状态。
5. 根据需要配置Cron计划和其他调度选项,自动化你的后台任务。
6. 使用平台的并发控制和重试策略,确保任务的可靠性和弹性。
7. 利用Trigger.dev的版本控制功能,安全地部署新代码,而不会影响正在运行的任务。
8. 通过平台的仪表板和API,监控任务性能并优化代码。
浏览量:8
最新流量情况
月访问量
95.71k
平均访问时长
00:06:12
每次访问页数
8.62
跳出率
37.34%
流量来源
直接访问
46.34%
自然搜索
41.31%
邮件
0.09%
外链引荐
8.64%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
法国
7.54%
英国
8.41%
印度
5.85%
荷兰
5.65%
美国
26.55%
开源背景工作平台,无超时限制。
Trigger.dev是一个开源的背景工作平台,允许开发者编写常规的异步代码,而平台则负责从部署到弹性扩展的所有工作。它支持无超时、实时监控和零基础设施管理。该平台特别适合需要处理长时间运行任务的开发者,提供了一个无需管理服务器的解决方案,并且可以根据需要自动扩展。
一键式无服务器RAG平台
SciPhi是一个开源的端到端RAG平台,使构建、部署和优化系统变得简单。它提供直观的框架和抽象,可与LangChain等解决方案相比较。通过SciPhi,您可以轻松启动和扩展最好的RAG系统,并选择各种托管和远程提供商以满足您的需求。无论是自托管还是云部署选项都可用。
ComfyUI节点,用于MMAudio模型的音频处理
ComfyUI-MMAudio是一个基于ComfyUI的插件,它允许用户利用MMAudio模型进行音频处理。该插件的主要优点在于能够提供高质量的音频生成和处理能力,支持多种音频模型,并且易于集成到现有的音频处理流程中。产品背景信息显示,它是由kijai开发的,并且是开源的,可以在GitHub上找到。目前,该插件主要面向技术爱好者和音频处理专业人士,可以免费使用。
Model Context Protocol的命令行检查工具
mcp-cli是一个命令行界面(CLI)检查器,用于Model Context Protocol(MCP)。它允许用户运行MCP服务器,列出工具、资源、提示,并调用工具、读取资源、读取提示。这个工具对于开发者来说非常重要,因为它简化了MCP服务器的开发和交互过程,使得开发者可以更高效地管理和调试MCP服务器。mcp-cli是用JavaScript编写的,并且完全开源,可以在GitHub上找到其源代码。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度和强大的文本图像对齐能力,使得在笔记本电脑GPU上也能部署。它是一个基于线性扩散变换器(text-to-image generative model)的模型,拥有1648M参数,专门用于生成1024px基础的多尺度高宽图像。Sana模型的主要优点包括高分辨率图像生成、快速的合成速度以及强大的文本图像对齐能力。Sana模型的背景信息显示,它是基于开源代码开发的,可以在GitHub上找到源代码,同时它也遵循特定的许可证(CC BY-NC-SA 4.0 License)。
自动解决软件开发问题的无代理方法
Agentless是一种无需代理的自动解决软件开发问题的方法。它通过定位、修复和补丁验证三个阶段来解决每个问题。Agentless利用分层过程定位故障到特定文件、相关类或函数,以及细粒度的编辑位置。然后,Agentless根据编辑位置采样多个候选补丁,并选择回归测试来运行,生成额外的复现测试以复现原始错误,并使用测试结果重新排名所有剩余补丁,以选择一个提交。Agentless是目前在SWE-bench lite上表现最佳的开源方法,具有82个修复(27.3%的解决率),平均每问题成本0.34美元。
开源AI语音处理工具包,支持语音增强、分离和目标说话人提取。
ClearerVoice-Studio是一个开源的AI驱动语音处理工具包,专为研究人员、开发者和最终用户设计。它提供了语音增强、语音分离、目标说话人提取等功能,并提供了最新的预训练模型以及训练和推理脚本,全部可通过此仓库访问。该工具包以其预训练模型、易用性、全面功能和社区驱动的特点而受到青睐。
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的高清晰度、高文本-图像一致性的图像,并且速度极快,可以在笔记本电脑GPU上部署。Sana模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器。该技术的重要性在于其能够快速生成高质量的图像,对于艺术创作、设计和其他创意领域具有革命性的影响。Sana模型遵循CC BY-NC-SA 4.0许可协议,源代码可在GitHub上找到。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像的生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度、强大的文本图像对齐能力以及可在笔记本电脑GPU上部署的特性而著称。该模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,代表了文本到图像生成技术的最新进展。Sana的主要优点包括高分辨率图像生成、快速合成、笔记本电脑GPU上的可部署性,以及开源的代码,使其在研究和实际应用中具有重要价值。
智能助手,与Postgres对话,生成、运行和调试查询。
Supabase AI Assistant是一个集成在Supabase平台中的智能助手,它允许用户通过自然语言与Postgres数据库进行交互,生成、运行和调试SQL查询,创建函数,制定策略等。这个助手的主要优点在于它能够简化数据库操作,提高开发效率,并且通过自然语言处理技术降低了数据库操作的技术门槛。Supabase是一个快速发展的开源Firebase替代品,它提供了包括数据库、身份验证、存储和实时功能在内的后端即服务。
文件解析器,专为LLMs解析PDF、Docx、PPTx等文档。
MegaParse是一个强大的文件解析器,专为大型语言模型(LLMs)设计,以确保在解析过程中不丢失任何信息。它支持多种文件格式,包括PDF、PowerPoint、Word文档等,并且是开源的。这个工具的主要优点是速度快、效率高,且能够广泛兼容不同文件类型。MegaParse的背景信息显示,它是由QuivrHQ开发的,并且拥有活跃的社区和贡献者。产品是免费的,并且可以通过GitHub访问其源代码。
视频处理界面,提供视频编码和解码功能
ComfyUI-HunyuanVideoWrapper 是一个基于 HunyuanVideo 的视频处理界面,主要功能是视频编码和解码。它利用先进的视频处理技术,允许用户在较低的硬件要求下处理视频,即使在内存较小的设备上也能实现视频功能。该产品背景信息显示,它特别适合需要在资源受限环境下处理视频的用户,并且是开源的,可以免费使用。
开源本地RAG,集成ChatGPT和MCP能力
Minima是一个开源的、完全本地化的RAG(Retrieval-Augmented Generation)模型,具备与ChatGPT和MCP(Model Context Protocol)集成的能力。它支持三种模式:完全本地安装、通过ChatGPT查询本地文档以及使用Anthropic Claude查询本地文件。Minima的主要优点包括本地化处理数据,保护隐私,以及能够利用强大的语言模型来增强检索和生成任务。产品背景信息显示,Minima支持多种文件格式,并允许用户自定义配置以适应不同的使用场景。Minima是免费开源的,定位于需要本地化AI解决方案的开发者和企业。
高性能英文文本生成模型
OLMo-2-1124-7B-SFT是由艾伦人工智能研究所(AI2)发布的一个英文文本生成模型,它是OLMo 2 7B模型的监督微调版本,专门针对Tülu 3数据集进行了优化。Tülu 3数据集旨在提供多样化任务的顶尖性能,包括聊天、数学问题解答、GSM8K、IFEval等。该模型的主要优点包括强大的文本生成能力、多样性任务处理能力以及开源的代码和训练细节,使其成为研究和教育领域的有力工具。
开源AIOps平台,管理大规模告警/事件的瑞士军刀
Keep是一个开源的AIOps平台,专为复杂环境中处理告警的团队设计。它通过AI技术增强IT运维能力,提供告警丰富、工作流、单视图界面和90多个集成选项。Keep平台支持从SRE、运维人员到工程师、初创企业和全球企业,是可靠团队的选择。产品背景信息显示,Keep在2024年宣布了270万美元的种子轮融资,并在GitHub上拥有7.8k的关注者,体现了其在开源社区的影响力和受欢迎程度。Keep提供免费试用和不同定价方案,定位于大型企业和需要高效管理告警的团队。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
为LTX视频模型提供额外控制的ComfyUI节点集合
ComfyUI-LTXTricks是一个为LTX视频模型提供额外控制的ComfyUI节点集合。它通过实现RF-Inversion和RF-Solver-Edit等技术,允许用户对视频内容进行更精细的操作和编辑。该产品背景信息显示,它是基于开源项目构建的,拥有活跃的社区支持,并且遵循GPL-3.0许可证。产品的主要优点包括无需额外安装包、提供丰富的示例工作流以及支持多种视频编辑技术。
一键生成多语言翻译的项目工具,由Azure AI服务支持。
Co-op Translator是一个Python包,旨在使用Azure AI服务自动化您的项目中的多语言翻译。该项目通过集成先进的大型语言模型(LLM)技术和Azure AI服务,简化了将内容翻译成多种语言的过程,使开发者能够轻松地生成组织良好的翻译文件夹,并轻松翻译Markdown文件和图像。
AI驱动的开源笔记/研究平台,尊重您的隐私。
Open Notebook是一个结合了人工智能的强大开源笔记和研究平台,专为研究人员、学生和专业人士设计,旨在增强他们的学习和能力,同时完全控制工作流程、模型以及数据的使用和暴露。该产品代表了一种新型的隐私保护学习工具,它通过AI技术帮助用户整理笔记、生成播客和深入理解学习内容,同时确保用户的数据隐私不受侵犯。Open Notebook的背景信息显示,它是一个开源项目,鼓励社区参与和贡献,以构建一个能够个性化辅助每个人发展的智能伙伴。
实时端到端自动驾驶的截断扩散模型
DiffusionDrive是一个用于实时端到端自动驾驶的截断扩散模型,它通过减少扩散去噪步骤来加快计算速度,同时保持高准确性和多样性。该模型直接从人类示范中学习,无需复杂的预处理或后处理步骤,即可实现实时的自动驾驶决策。DiffusionDrive在NAVSIM基准测试中取得了88.1 PDMS的突破性成绩,并且能够在45 FPS的速度下运行。
高效率的高分辨率图像合成框架
Sana是一个文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。它以极快的速度合成高分辨率、高质量的图像,并保持强大的文本-图像对齐,可以部署在笔记本电脑GPU上。Sana的核心设计包括深度压缩自编码器、线性扩散变换器(DiT)、仅解码器的小型语言模型作为文本编码器,以及高效的训练和采样策略。Sana-0.6B与现代大型扩散模型相比,体积小20倍,测量吞吐量快100倍以上。此外,Sana-0.6B可以部署在16GB笔记本电脑GPU上,生成1024×1024分辨率图像的时间少于1秒。Sana使得低成本的内容创作成为可能。
一键AI变身、发型、穿搭,发现更美的自己
MagicMirror是一款利用人工智能技术的桌面客户端应用,它能够让用户通过简单的拖拽照片,一键实现变身、换发型和穿搭的效果。这款应用的设计理念是简单易用,无需复杂的设置,也不需要高端的GPU硬件支持。MagicMirror强调隐私保护,所有处理完全在本地进行,不涉及云端处理,确保用户数据的安全。此外,它的安装包体积小,模型文件也轻便,便于用户下载和使用。MagicMirror的主要优点包括简单易用、硬件要求低、隐私保护、轻量级以及开源,这些都是它在图像处理领域中的重要优势。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
科学文献综合检索增强型语言模型
Ai2 OpenScholar是由艾伦人工智能研究所与华盛顿大学合作开发的检索增强型语言模型,旨在帮助科学家通过检索相关文献并基于这些文献生成回答来有效导航和综合科学文献。该模型在多个科学领域中表现出色,特别是在引用准确性和事实性方面。它代表了人工智能在科学研究中应用的重要进步,能够加速科学发现并提高研究效率。
Skywork o1 Open系列模型,提升复杂问题解决能力
Skywork-o1-Open-PRM-Qwen-2.5-1.5B是Skywork团队开发的一系列模型,这些模型结合了o1风格的慢思考和推理能力。该模型专门设计用于通过增量过程奖励增强推理能力,适合解决小规模的复杂问题。与简单的OpenAI o1模型复现不同,Skywork o1 Open系列模型不仅在输出中展现出固有的思考、规划和反思能力,而且在标准基准测试中的推理技能有显著提升。这一系列代表了AI能力的一次战略性进步,将原本较弱的基础模型推向了推理任务的最新技术(SOTA)。
高效开源的视觉语言模型
SmolVLM是一个小型但功能强大的视觉语言模型(VLM),拥有2B参数,以其较小的内存占用和高效性能在同类模型中处于领先地位。SmolVLM完全开源,包括所有模型检查点、VLM数据集、训练配方和工具均在Apache 2.0许可下发布。该模型适合在浏览器或边缘设备上进行本地部署,降低推理成本,并允许用户自定义。
先进的指令遵循模型,提供全面后训练技术指南。
Llama-3.1-Tulu-3-8B-RM是Tülu3模型家族的一部分,该家族以开源数据、代码和配方为特色,旨在为现代后训练技术提供全面指南。该模型专为聊天以外的多样化任务(如MATH、GSM8K和IFEval)提供最先进的性能。
© 2024 AIbase 备案号:闽ICP备08105208号-14