需求人群:
"目标受众为希望在网页应用中集成机器学习功能的开发者,特别是那些需要在客户端进行模型推理以减少服务器负载或处理隐私敏感数据的场景。"
使用场景示例:
在网页上实现实时语言翻译功能。
通过浏览器进行图像内容的自动标注和分类。
开发一个支持语音到文本转换的网页应用程序。
产品特色:
支持多种自然语言处理任务,如文本分类、命名实体识别、问答、语言模型、摘要、翻译等。
支持计算机视觉任务,包括图像分类、目标检测和分割。
支持音频任务,如自动语音识别和音频分类。
支持多模态任务,如零样本图像分类。
使用ONNX Runtime在浏览器中运行模型,易于将预训练模型转换为ONNX格式。
提供pipeline API,简化模型的输入预处理和输出后处理。
使用教程:
安装transformers.js库,可以通过npm运行'npm install @xenova/transformers'。
引入库到项目中,例如使用ES模块'import { pipeline } from '@xenova/transformers';'。
选择或配置所需的模型,可以通过pipeline函数指定模型ID或路径。
使用pipeline API进行模型推理,传入待处理的文本、图像或音频数据。
处理模型输出,获取所需的结果,如文本分类的标签和置信度。
根据应用场景,将结果展示给用户或进一步处理。
浏览量:84
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
在浏览器中直接运行先进的机器学习模型。
transformers.js 是一个JavaScript库,旨在为网页提供先进的机器学习能力。它允许用户在浏览器中直接运行预训练的Transformers模型,无需服务器支持。该库使用ONNX Runtime作为后端,支持将PyTorch、TensorFlow或JAX模型转换为ONNX格式。transformers.js 与 Hugging Face 的 transformers Python 库功能等价,提供相似的API,使得开发者能够轻松地将现有代码迁移到网页端。
基于Kokoro和ONNX运行时的文本到语音(TTS)项目。
kokoro-onnx是一个基于Kokoro模型和ONNX运行时的文本到语音(TTS)项目。它支持英语,并计划支持法语、日语、韩语和中文。该模型在macOS M1上具有接近实时的快速性能,并提供多种声音选择,包括耳语。模型轻量级,约为300MB(量化后约为80MB)。该项目在GitHub上开源,采用MIT许可证,方便开发者集成和使用。
Phi-3 Mini-128K-Instruct ONNX优化模型促进推理加速
Phi-3 Mini是一个轻量级的顶尖开源模型,建立在Phi-2使用的合成数据和过滤网站之上,专注于高质量的推理密集型数据。这个模型属于Phi-3系列,mini版本有两个变体支持4K和128K上下文长度。该模型经过了严格的增强过程,包括监督式微调和直接偏好优化,以确保精准遵循指令和强大的安全措施。这些经过ONNX优化的Phi-3 Mini模型可在CPU、GPU和移动设备上高效运行。微软还推出了ONNX Runtime Generate() API,简化了Phi-3的使用。
Phi-3 Mini 量化ONNX模型,支持多硬件平台加速推理
Phi-3 Mini是一款轻量级的最先进的开源大模型,构建于用于Phi-2的合成数据和过滤网站数据之上,致力于提供极高质量、推理密集型的数据。该模型经过了严格的增强过程,结合了监督式微调和直接偏好优化,以确保精确遵循指令和强大的安全措施。该仓库提供了Phi-3 Mini的优化ONNX版本,可通过ONNX Runtime在CPU和GPU上进行加速推理,支持服务器、Windows、Linux、Mac等多种平台,并针对每个平台提供最佳精度配置。ONNX Runtime的DirectML支持还可让开发人员在AMD、英特尔和NVIDIA GPU驱动的Windows设备上实现大规模硬件加速。
实时让肖像动起来!支持onnx/tensorrt
FasterLivePortrait是一个基于深度学习的实时肖像动画化项目。它通过使用TensorRT在RTX 3090 GPU上实现30+ FPS的实时运行速度,包括预处理和后处理,而不仅仅是模型推理速度。该项目还实现了将LivePortrait模型转换为Onnx模型,并在RTX 3090上使用onnxruntime-gpu实现约70ms/帧的推理速度,支持跨平台部署。此外,该项目还支持原生gradio app,速度提升数倍,并支持多张人脸的同时推理。代码结构经过重构,不再依赖PyTorch,所有模型使用onnx或tensorrt进行推理。
斯坦福大学的CS25课程,专注于深度学习模型Transformers
CS25是斯坦福大学提供的一门课程,主要探讨深度学习模型Transformers,该模型在全球范围内产生了巨大影响。课程邀请了Transformers研究领域的前沿人物,讨论从GPT和Gemini等LLM架构到创造性应用(如DALL-E和Sora)在内的最新突破。CS25已经成为斯坦福最热门和最令人兴奋的研讨会课程之一。
机器学习加速 API
DirectML 是Windows上的机器学习平台API,为硬件供应商提供了一个通用的抽象层来暴露他们的机器学习加速器。它可以与任何兼容DirectX 12的设备一起使用,包括GPU和NPU。通过减少编写机器学习代码的成本,DirectML使得AI功能集成更加容易。
端到端开源机器学习平台
TensorFlow是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展。在TensorFlow机器学习框架下,开发者能够轻松地构建和部署由机器学习提供支持的应用。
Python机器学习库
scikit-learn是一个简单高效的机器学习库,提供了丰富的机器学习算法和工具,可用于分类、回归、聚类、降维等任务。它基于NumPy、SciPy和matplotlib构建,具有易用性、性能优越以及可重复使用的特点。scikit-learn开源可商用,采用BSD许可证。
玩乐机器学习,成为钢琴大师!
Piano Genie是一个基于机器学习的钢琴模拟器。使用键盘上的数字键或触摸屏上的彩色块来演奏钢琴。按下空格键控制延音踏板。你越像真正的钢琴家一样弹奏,旋律(和你自己)就会越好听。Piano Genie使用magenta.js构建。
支持多种语音识别和语音合成功能的开源项目
sherpa-onnx 是一个基于下一代 Kaldi 的语音识别和语音合成项目,使用onnxruntime进行推理,支持多种语音相关功能,包括语音转文字(ASR)、文字转语音(TTS)、说话人识别、说话人验证、语言识别、关键词检测等。它支持多种平台和操作系统,包括嵌入式系统、Android、iOS、Raspberry Pi、RISC-V、服务器等。
无代码机器学习平台
NextBrain AI是一款无代码机器学习平台,让任何人都能轻松训练机器学习模型并将数据转化为有价值的见解,指导决策。它提供简单有效的分析和宝贵的洞察力,无需编程知识。同时支持Google Sheets插件和Web应用,选择适合您的方式开始训练机器学习模型吧!
简化机器学习模型的训练和部署
Sagify是一个命令行工具,可以在几个简单步骤中训练和部署机器学习/深度学习模型在AWS SageMaker上!它消除了配置云实例进行模型训练的痛苦,简化了在云上运行超参数作业的过程,同时不再需要将模型交给软件工程师进行部署。Sagify提供了丰富的功能,包括AWS账户配置、Docker镜像构建、数据上传、模型训练、模型部署等。它适用于各种使用场景,帮助用户快速构建和部署机器学习模型。
苹果芯片高效灵活机器学习
MLX是一种类似NumPy的数组框架,专为在苹果芯片上进行高效灵活的机器学习而设计,由苹果机器学习研究团队提供。Python API与NumPy紧密相似,但也有一些例外。MLX还具有完整的C++ API,紧密遵循Python API。MLX与NumPy的主要区别包括:可组合的函数转换、惰性计算和多设备支持。MLX的设计灵感来自PyTorch、Jax和ArrayFire等框架。与这些框架不同的是,MLX采用统一内存模型。MLX中的数组位于共享内存中,可以在任何受支持的设备类型(CPU、GPU等)上执行操作,而无需执行数据复制。
简化机器学习云服务
Deploifai是一种管理机器学习项目云端的工具,让您可以专注于解决方案。它提供简化的云服务,帮助您管理和部署机器学习模型,包括数据集管理、模型训练、部署和监控。Deploifai的优势在于简化了复杂的基础设施设置,提供易于使用的界面和工具,以及高度可扩展的计算和存储资源。价格根据使用量和功能等级而定,适用于个人开发者和企业团队。
提高大学生自学效率和质量的智能学习助手
夸克App推出的AI学习助手基于自研大模型,通过智能化的解题思路和讲解方式,提升大学生自学效率和质量。采用夸克宝宝的虚拟形象进行题目讲解,提供“考点分析”“详解步骤”“答案总结”等详细内容。并通过夸克网盘实现学习资料备份和使用,以及夸克扫描王提取核心复习内容。覆盖英语等学科的选择题、填空题、阅读题等常考题型,后续将加入数学等学科。
探索YouTube上最新的机器学习/人工智能课程
ML-YouTube-Courses是一个开源项目,致力于整理和索引YouTube上最新的、最好的机器学习课程。项目包含各种主题的课程,如机器学习、深度学习、自然语言处理、计算机视觉等,涵盖基础知识和前沿技术。该项目帮助开发者和学习者高效地发现优质的在线教程。
为真实世界机器人提供最先进的机器学习模型、数据集和工具。
LeRobot 是一个旨在降低进入机器人领域的门槛,让每个人都能贡献并从共享数据集和预训练模型中受益的开源项目。它包含了在真实世界中经过验证的最先进的方法,特别关注模仿学习和强化学习。LeRobot 提供了一组预训练模型、带有人类收集演示的数据集和模拟环境,以便用户无需组装机器人即可开始。未来几周内,计划增加对最实惠和最有能力的真实世界机器人的支持。
上传数据,获取机器学习模型
Automated Machine Learning as a Service是一个提供自动化机器学习服务的网站。用户可以通过上传数据来获取他们的机器学习模型,该平台为用户提供了便捷的机器学习模型开发和部署流程。该平台还提供了丰富的功能和优势,包括简单易用的界面、自动化的模型训练和优化、灵活的定价策略等。用户可以根据自己的需求选择适合的定价方案,并在不同的场景中应用该机器学习模型。该产品的定位是为广大用户提供高效、便捷、灵活的机器学习解决方案。
使用机器学习找到最适合您的公寓
growerly.ai是一个使用机器学习算法帮助您找到最适合的公寓的平台。我们提供先进的筛选功能,使用最新的位置数据和每小时更新的租金报价。您可以设置筛选条件和选择感兴趣的社区,每天早上我们将向您通知最佳的公寓。
Apple官方机器学习模型训练框架
Create ML是一个Apple官方发布的机器学习模型训练框架,可以非常方便地在Mac设备上训练Core ML模型。它提供了图像、视频、文本等多种模型类型,用户只需要准备数据集和设置参数,就可以开始模型训练。Create ML还提供了Swift API,支持在iOS等平台进行模型训练。
机器学习轻松入门
Lobe是一个免费、易于使用的工具,帮助您训练自定义的机器学习模型,并在您的应用程序中使用。Lobe具备一切您需要将机器学习想法实现的功能。只需展示给它您想让它学习的示例,它就会自动训练一个定制的机器学习模型,可在您的应用程序中使用。
低代码的python机器学习库
PyCaret是一个开源的、低代码的Python机器学习库,它可以自动化机器学习工作流程。PyCaret 可以让你花费更少的时间编写代码,更多的时间用于分析。PyCaret模块化设计,每个模块封装了特定的机器学习任务。PyCaret中一致的函数集可以在工作流中执行任务。PyCaret中有许多数据预处理功能可供选择,从缩放到特征工程。有大量有趣的教程可以帮助你学习PyCaret,你可以从我们的官方教程开始。PyCaret使机器学习变得简单有趣。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
机器学习模型运行和部署的工具
Replicate是一款机器学习模型运行和部署的工具,无需自行配置环境,可以快速运行和部署机器学习模型。Replicate提供了Python库和API接口,支持运行和查询模型。社区共享了成千上万个可用的机器学习模型,涵盖了文本理解、视频编辑、图像处理等多个领域。使用Replicate和相关工具,您可以快速构建自己的项目并进行部署。
一键部署机器学习模型到生产环境
PoplarML 是一个能够以极低的工程成本部署可扩展的机器学习系统到生产环境的平台。它提供了一键部署的功能,可无缝地将机器学习模型部署到一组GPU上。用户可以通过REST API端点实时调用模型进行推断。PoplarML 支持各种深度学习框架,如Tensorflow、Pytorch和JAX。除此之外,PoplarML 还提供了多项优势,包括高效的实时推断、自动扩展能力以适应流量需求、灵活的部署选项等。定价方面,请访问官方网站获取详细信息。
轻松创建你自己的机器学习模型
Teachable Machine是一个基于网页的工具,使用户可以快速轻松地创建机器学习模型,无需专业知识或编码能力。用户只需收集并整理样本数据,Teachable Machine将自动训练模型,然后用户可以测试模型准确性,最后将模型导出使用。
© 2025 AIbase 备案号:闽ICP备08105208号-14