需求人群:
"目标受众主要是语音识别和说话人分割领域的研究人员、开发者和企业用户。Reverb 提供了高质量的语音处理工具,适合需要进行语音分析和处理的场合,如会议记录、电话录音分析等。"
使用场景示例:
用于会议记录的自动语音识别和说话人分割
电话客服录音的语音内容分析
法庭记录的语音转写和说话人识别
产品特色:
基于 WeNet 框架的语音识别代码
基于 Pyannote 框架的说话人分割代码
提供长形式语音识别和说话人分割的WER和WDER结果
支持通过 Hugging Face Hub 下载模型
提供 Docker 镜像以简化部署
支持在 NVIDIA GPU 上运行以提高性能
提供详细的安装和使用说明
使用教程:
1. 确保系统中已安装 Git Large File Storage (LFS)。
2. 使用 HUGGINGFACE_ACCESS_TOKEN 从 Hugging Face Hub 下载模型。
3. 克隆 Reverb 代码库到本地。
4. 设置虚拟环境并激活。
5. 在代码库根目录下,设置环境变量以包含 ASR 目录。
6. 使用 Docker 构建镜像(如果需要)。
7. 运行 Docker 容器(如果使用 Docker 部署)。
8. 按照 README.md 中的说明进行模型推理和评估。
浏览量:35
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
开源的语音识别和说话人分割模型推理代码
Reverb 是一个开源的语音识别和说话人分割模型推理代码,使用 WeNet 框架进行语音识别 (ASR) 和 Pyannote 框架进行说话人分割。它提供了详细的模型描述,并允许用户从 Hugging Face 下载模型。Reverb 旨在为开发者和研究人员提供高质量的语音识别和说话人分割工具,以支持各种语音处理任务。
Android平台上的私有、设备端语音识别键盘和文字服务
Transcribro是一款运行在Android平台上的私有、设备端语音识别键盘和文字服务应用,它使用whisper.cpp来运行OpenAI Whisper系列模型,并结合Silero VAD进行语音活动检测。该应用提供了语音输入键盘,允许用户通过语音进行文字输入,并且可以被其他应用显式使用,或者设置为用户选择的语音转文字应用,部分应用可能会使用它来进行语音转文字。Transcribro的背景是为用户提供一种更安全、更私密的语音转文字解决方案,避免了云端处理可能带来的隐私泄露问题。该应用是开源的,用户可以自由地查看、修改和分发代码。
开源多模态大型语言模型,支持实时语音输入和流式音频输出。
Mini-Omni是一个开源的多模态大型语言模型,能够实现实时的语音输入和流式音频输出的对话能力。它具备实时语音到语音的对话功能,无需额外的ASR或TTS模型。此外,它还可以在思考的同时进行语音输出,支持文本和音频的同时生成。Mini-Omni通过'Audio-to-Text'和'Audio-to-Audio'的批量推理进一步增强性能。
与大型语言模型进行自然的语音对话
OpenVoiceChat是一个开源项目,旨在提供一个与大型语言模型(LLM)进行自然语音对话的平台。它支持多种语音识别(STT)、文本到语音(TTS)和LLM模型,允许用户通过语音与AI进行交互。项目采用Apache-2.0许可,强调开放性和易用性,目标是成为封闭商业实现的开源替代品。
开源的语音到语音转换模块
speech-to-speech 是一个开源的模块化GPT4-o项目,通过语音活动检测、语音转文本、语言模型和文本转语音等连续部分实现语音到语音的转换。它利用了Transformers库和Hugging Face hub上可用的模型,提供了高度的模块化和灵活性。
基于OpenAI Whisper的自动语音识别与说话人分割
whisper-diarization是一个结合了Whisper自动语音识别(ASR)能力、声音活动检测(VAD)和说话人嵌入技术的开源项目。它通过提取音频中的声音部分来提高说话人嵌入的准确性,然后使用Whisper生成转录文本,并通过WhisperX校正时间戳和对齐,以减少由于时间偏移导致的分割错误。接着,使用MarbleNet进行VAD和分割以排除静音,TitaNet用于提取说话人嵌入以识别每个段落的说话人,最后将结果与WhisperX生成的时间戳关联,基于时间戳检测每个单词的说话人,并使用标点模型重新对齐以补偿小的时间偏移。
300行代码实现基于LLM的语音转录。
WeST是一个开源的语音识别转录模型,以300行代码的简洁形式,基于大型语言模型(LLM)实现语音到文本的转换。它由一个大型语言模型、一个语音编码器和一个投影器组成,其中仅投影器部分可训练。WeST的开发灵感来源于SLAM-ASR和LLaMA 3.1,旨在通过简化的代码实现高效的语音识别功能。
自然交互的语音理解和生成基础模型
FunAudioLLM是一个旨在增强人类与大型语言模型(Large Language Models, LLMs)之间自然语音交互的框架。它包含两个创新模型:SenseVoice负责高精度多语种语音识别、情绪识别和音频事件检测;CosyVoice负责自然语音生成,支持多语种、音色和情绪控制。SenseVoice支持超过50种语言,具有极低的延迟;CosyVoice擅长多语种语音生成、零样本上下文生成、跨语言语音克隆和指令跟随能力。相关模型已在Modelscope和Huggingface上开源,并在GitHub上发布了相应的训练、推理和微调代码。
开源、精准、方便的视频切片工具
FunClip是一款完全开源、本地部署的自动化视频剪辑工具,通过调用阿里巴巴通义实验室开源的FunASR Paraformer系列模型进行视频的语音识别,随后用户可以自由选择识别结果中的文本片段或说话人,点击裁剪按钮即可获取对应片段的视频。FunClip集成了阿里巴巴开源的工业级模型Paraformer-Large,是当前识别效果最优的开源中文ASR模型之一,并且能够一体化的准确预测时间戳。
开源代码库,为HuggingChat应用提供动力
chat-ui是一个开源的聊天界面,使用开源模型如OpenAssistant或Llama。它是一个SvelteKit应用程序,为hf.co/chat上的HuggingChat应用提供支持。该产品允许用户通过自定义配置来运行和部署自己的Chat UI实例,支持多种语言模型和功能,如Web搜索、自定义模型等。
联合语音转录和实体识别的先进模型
Whisper-NER是一个创新的模型,它允许同时进行语音转录和实体识别。该模型支持开放类型的命名实体识别(NER),能够识别多样化和不断演变的实体。Whisper-NER旨在作为自动语音识别(ASR)和NER下游任务的强大基础模型,并且可以在特定数据集上进行微调以提高性能。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
为数据中心打造的高效AI推理平台
d-Matrix是一家专注于AI推理技术的公司,其旗舰产品Corsair™是为数据中心设计的AI推理平台,能够提供极高的推理速度和极低的延迟。d-Matrix通过硬件软件协同设计,优化了Generative AI推理性能,推动了AI技术在数据中心的应用,使得大规模AI推理变得更加高效和可持续。
释放超级推理能力,提升AIME & MATH基准测试性能。
DeepSeek-R1-Lite-Preview是一款专注于提升推理能力的AI模型,它在AIME和MATH基准测试中展现了出色的性能。该模型具备实时透明的思考过程,并且计划推出开源模型和API。DeepSeek-R1-Lite-Preview的推理能力随着思考长度的增加而稳步提升,显示出更好的性能。产品背景信息显示,DeepSeek-R1-Lite-Preview是DeepSeek公司推出的最新产品,旨在通过人工智能技术提升用户的工作效率和问题解决能力。目前,产品提供免费试用,具体的定价和定位信息尚未公布。
基于Stable Diffusion 3.5 Large模型的IP适配器
SD3.5-Large-IP-Adapter是一个基于Stable Diffusion 3.5 Large模型的IP适配器,由InstantX Team研发。该模型能够将图像处理工作类比于文本处理,具有强大的图像生成能力,并且可以通过适配器技术进一步提升图像生成的质量和效果。该技术的重要性在于其能够推动图像生成技术的发展,特别是在创意工作和艺术创作领域。产品背景信息显示,该模型是由Hugging Face和fal.ai赞助的项目,并且遵循stabilityai-ai-community的许可协议。
下一代Python笔记本
marimo是一个开源的Python反应式笔记本,它具有可复现性、对git友好、可以作为脚本执行,并且可以作为应用程序分享。它通过自动运行受影响的单元格来响应单元格的更改,消除了管理笔记本状态的繁琐工作。marimo的UI元素如数据框架GUI和图表,使得数据处理变得快速、未来感和直观。marimo笔记本以.py文件存储,可以与git版本控制一起使用,可以作为Python脚本运行,也可以导入符号到其他笔记本或Python文件中,并使用你喜欢的工具进行lint或格式化。所有这些都在现代的 AI 支持的编辑器中进行。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
多模态语音大型语言模型
ultravox-v0_4_1-mistral-nemo是一个基于预训练的Mistral-Nemo-Instruct-2407和whisper-large-v3-turbo的多模态语音大型语言模型(LLM)。该模型能够同时处理语音和文本输入,例如,一个文本系统提示和一个语音用户消息。Ultravox通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以输入到声码器中产生语音输出。该模型由Fixie.ai开发,采用MIT许可。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
下一代语音AI,打造自然沟通的AI语音代理。
Ultravox.ai是一个先进的语音语言模型(SLM),直接处理语音,无需转换为文本,实现更自然、流畅的对话。它支持多语言,易于适应新语言或口音,确保与不同受众的顺畅沟通。产品背景信息显示,Ultravox.ai是一个开源模型,用户可以根据自己的需求进行定制和部署,价格为每分钟5美分。
基于LLM的智能字幕助手,一键生成高质量视频字幕
卡卡字幕助手(VideoCaptioner)是一款功能强大的视频字幕配制软件,利用大语言模型进行字幕智能断句、校正、优化、翻译,实现字幕视频全流程一键处理。产品无需高配置,操作简单,内置基础LLM模型,保证开箱即用,且消耗模型Token少,适合视频制作者和内容创作者。
开源的GenAI应用网关,快速构建个性化的AI应用
Arch是一个开源的网关,专为处理提示(prompts)而设计,它利用快速的大型语言模型(LLMs)来处理提示,并与后端系统无缝集成。Arch基于Envoy构建,支持任何应用程序语言,并提供快速部署和透明升级。它提供了包括流量管理、前端/边缘网关、监控和端到端追踪在内的多种功能,帮助开发者构建快速、健壮和个性化的GenAI应用。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
免费 npm 库,用 Llama 3.2 Vision 进行 OCR,输出 markdown 文本
开源 npm 库,免费使用 Llama 3.2 Vision 进行 OCR,支持本地和远程图像,计划支持 PDF,受 Zerox 启发,有免费和付费接口
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
© 2024 AIbase 备案号:闽ICP备08105208号-14