需求人群:
"Lumina-T2X适合于需要将文本内容转换为多媒体形式的专业人士和爱好者,如图像设计师、视频编辑、3D建模师和语音合成师。它的强大功能和灵活性使其成为创意产业和多媒体内容创作的理想工具。"
使用场景示例:
生成描述性文本的高质量图像
将故事情节转换为动态视频序列
创建具有特定视角的3D模型展示
合成具有特定情感色彩的语音
产品特色:
支持文本到图像、视频、3D和语音的生成
采用基于流的大型扩散变换器(Flag-DiT)技术
能够处理高达7亿参数的模型
支持128,000个标记的序列长度
生成任意分辨率、宽高比和时长的输出
引入[nextline]和[nextframe]标记以支持分辨率外推
在训练资源上表现出较低的计算需求
使用教程:
访问Lumina-T2X的GitHub页面以获取项目信息
阅读项目文档以了解如何配置和运行模型
根据需求选择适当的文本到模态生成任务
准备或输入描述性的文本内容
运行模型并观察生成的输出
根据需要调整模型参数以优化生成结果
在社交媒体、网站或多媒体项目中使用生成的内容
浏览量:62
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
一个统一的文本到任意模态生成框架
Lumina-T2X是一个先进的文本到任意模态生成框架,它能够将文本描述转换为生动的图像、动态视频、详细的多视图3D图像和合成语音。该框架采用基于流的大型扩散变换器(Flag-DiT),支持高达7亿参数,并能扩展序列长度至128,000个标记。Lumina-T2X集成了图像、视频、3D对象的多视图和语音频谱图到一个时空潜在标记空间中,可以生成任何分辨率、宽高比和时长的输出。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
异步去噪并行化扩散模型
AsyncDiff 是一种用于并行化扩散模型的异步去噪加速方案,它通过将噪声预测模型分割成多个组件并分配到不同的设备上,实现了模型的并行处理。这种方法显著减少了推理延迟,同时对生成质量的影响很小。AsyncDiff 支持多种扩散模型,包括 Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、ControlNet、Stable Video Diffusion 和 AnimateDiff。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
盲图像恢复技术,利用即时生成参考图像恢复破损图像
InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
用于精确控制扩散模型中概念的低秩适配器
Concept Sliders 是一种用于精确控制扩散模型中概念的技术,它通过低秩适配器(LoRA)在预训练模型之上进行应用,允许艺术家和用户通过简单的文本描述或图像对来训练控制特定属性的方向。这种技术的主要优点是能够在不改变图像整体结构的情况下,对生成的图像进行细微调整,如眼睛大小、光线等,从而实现更精细的控制。它为艺术家提供了一种新的创作表达方式,同时解决了生成模糊或扭曲图像的问题。
3D纹理生成技术,根据文本描述合成3D纹理
TexGen是一个创新的多视角采样和重采样框架,用于根据任意文本描述合成3D纹理。它利用预训练的文本到图像的扩散模型,通过一致性视图采样和注意力引导的多视角采样策略,以及噪声重采样技术,显著提高了3D对象的纹理质量,具有高度的视角一致性和丰富的外观细节。
开源的基于流的文本到图像生成模型
AuraFlow v0.1是一个完全开源的、基于流的文本到图像生成模型,它在GenEval上达到了最先进的结果。目前模型处于beta阶段,正在不断改进中,社区反馈至关重要。感谢两位工程师@cloneofsimo和@isidentical将此项目变为现实,以及为该项目奠定基础的研究人员。
基于文本的视频编辑技术,使用时空切片。
Slicedit是一种零样本视频编辑技术,它利用文本到图像的扩散模型,并结合时空切片来增强视频编辑中的时序一致性。该技术能够保留原始视频的结构和运动,同时符合目标文本描述。通过广泛的实验,证明了Slicedit在编辑真实世界视频方面具有明显优势。
通过LLM增强语义对齐的扩散模型适配器
ELLA(Efficient Large Language Model Adapter)是一种轻量级方法,可将现有的基于CLIP的扩散模型配备强大的LLM。ELLA提高了模型的提示跟随能力,使文本到图像模型能够理解长文本。我们设计了一个时间感知语义连接器,从预训练的LLM中提取各种去噪阶段的时间步骤相关条件。我们的TSC动态地适应了不同采样时间步的语义特征,有助于在不同的语义层次上对U-Net进行冻结。ELLA在DPG-Bench等基准测试中表现优越,尤其在涉及多个对象组合、不同属性和关系的密集提示方面表现出色。
官方实现的自纠正LLM控制的扩散模型
SLD是一个自纠正的LLM控制的扩散模型框架,它通过集成检测器增强生成模型,以实现精确的文本到图像对齐。SLD框架支持图像生成和精细编辑,并且与任何图像生成器兼容,如DALL-E 3,无需额外训练或数据。
提高文本到图像合成质量的一致性蒸馏技术
TCD是一种用于文本到图像合成的一致性蒸馏技术,它通过轨迹一致性函数(TCF)和策略性随机采样(SSS)来减少合成过程中的错误。TCD在低NFE(噪声自由能量)时显著提高图像质量,并在高NFE时保持比教师模型更详细的结果。TCD不需要额外的判别器或LPIPS监督,即可在低NFE和高NFE时均保持优越的生成质量。
OpenDiT:一款简单、快速、高效的DiT训练和推理系统
OpenDiT是一个开源项目,提供了一个基于Colossal-AI的Diffusion Transformer(DiT)的高性能实现,专为增强DiT应用(包括文本到视频生成和文本到图像生成)的训练和推理效率而设计。OpenDiT通过以下技术提升性能:在GPU上高达80%的加速和50%的内存减少;包括FlashAttention、Fused AdaLN和Fused layernorm核心优化;包括ZeRO、Gemini和DDP的混合并行方法,还有对ema模型进行分片进一步降低内存成本;FastSeq:一种新颖的序列并行方法,特别适用于DiT等工作负载,其中激活大小较大但参数大小较小;单节点序列并行可以节省高达48%的通信成本;突破单个GPU的内存限制,减少整体训练和推理时间;通过少量代码修改获得巨大性能改进;用户无需了解分布式训练的实现细节;完整的文本到图像和文本到视频生成流程;研究人员和工程师可以轻松使用和调整我们的流程到实际应用中,无需修改并行部分;在ImageNet上进行文本到图像训练并发布检查点。
OFT可有效稳定微调文本到图像扩散模型
Controlling Text-to-Image Diffusion研究了如何有效引导或控制强大的文本到图像生成模型进行各种下游任务。提出了正交微调(OFT)方法,可以保持模型的生成能力。OFT可以保持神经元之间的超球面能量不变,防止模型坍塌。作者考虑了两种重要的微调任务:主体驱动生成和可控生成。结果表明,OFT方法在生成质量和收敛速度上优于现有方法。
一个千万级3D形状模型
Make-A-Shape是一个新的3D生成模型,旨在以高效的方式训练大规模数据,能够利用1000万个公开可用的形状。我们创新性地引入了小波树表示法,通过制定子带系数滤波方案来紧凑地编码形状,然后通过设计子带系数打包方案将表示布置在低分辨率网格中,使其可生成扩散模型。此外,我们还提出了子带自适应训练策略,使我们的模型能够有效地学习生成粗细小波系数。最后,我们将我们的框架扩展为受额外输入条件控制,以使其能够从各种模态生成形状,例如单/多视图图像、点云和低分辨率体素。在大量实验中,我们展示了无条件生成、形状完成和条件生成等各种应用。我们的方法不仅在提供高质量结果方面超越了现有技术水平,而且在几秒内高效生成形状,通常在大多数条件下仅需2秒钟。
基于Transformer的通用领域文本到图像生成
CogView是一个用于通用领域文本到图像生成的预训练Transformer模型。该模型包含410亿参数,能够生成高质量、多样化的图像。模型的训练思路采用抽象到具体的方式,先 pretrain 获得通用知识,然后 finetune 在特定域生成图像,能显著提升生成质量。值得一提的是,论文还提出了两种帮助大模型稳定训练的技巧:PB-relax 和 Sandwich-LN。
文本到视频的指导生成模型
InstructVideo 是一种通过人类反馈用奖励微调来指导文本到视频的扩散模型的方法。它通过编辑的方式进行奖励微调,减少了微调成本,同时提高了微调效率。它使用已建立的图像奖励模型,通过分段稀疏采样和时间衰减奖励的方式提供奖励信号,显著提高了生成视频的视觉质量。InstructVideo 不仅能够提高生成视频的视觉质量,还能保持较强的泛化能力。欲了解更多信息,请访问官方网站。
升级扩散模型插件通用兼容性
X-Adapter是一个通用升级工具,可以使预训练的插件模块(例如ControlNet、LoRA)直接与升级的文本到图像扩散模型(例如SD-XL)配合使用,无需进一步重新训练。通过训练额外的网络来控制冻结的升级模型,X-Adapter保留旧模型的连接器,并添加可训练的映射层以连接不同版本模型的解码器进行特征重映射。重映射的特征将作为升级模型的引导。为了增强X-Adapter的引导能力,我们采用空文本训练策略。在训练后,我们还引入了两阶段去噪策略,以调整X-Adapter和升级模型的初始潜变量。X-Adapter展示了与各种插件的通用兼容性,并使不同版本的插件能够共同工作,从而扩展了扩散社区的功能。我们进行了大量实验证明,X-Adapter可能在升级的基础扩散模型中有更广泛的应用。
Show-1 将像素和潜在扩散模型结合起来,以实现高效的高质量文本到视频的生成
Show-1是一种高效的文本到视频生成模型,它结合了像素级和潜变量级的扩散模型,既能生成与文本高度相关的视频,也能以较低的计算资源要求生成高质量的视频。它首先用像素级模型生成低分辨率的初步视频,然后使用潜变量模型将其上采样到高分辨率,从而结合两种模型的优势。相比纯潜变量模型,Show-1生成的视频文本关联更准确;相比纯像素模型,它的运算成本也更低。
基于扩散的混合运动动态角色艺术动画生成工具
MikuDance是一个基于扩散的动画生成管道,它结合了混合运动动态来动画化风格化的角色艺术。该技术通过混合运动建模和混合控制扩散两大关键技术,解决了高动态运动和参考引导错位在角色艺术动画中的挑战。MikuDance通过场景运动跟踪策略显式地在像素级空间中建模动态相机,实现统一的角色场景运动建模。在此基础上,混合控制扩散隐式地对不同角色的尺度和体型进行对齐,允许灵活控制局部角色运动。此外,还加入了运动自适应归一化模块,有效注入全局场景运动,为全面的角色艺术动画铺平了道路。通过广泛的实验,MikuDance在各种角色艺术和运动引导下展示了其有效性和泛化能力,始终如一地产生具有显著运动动态的高质量动画。
高效率自回归视频生成模型
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
利用像素空间拉普拉斯扩散模型生成高质量图像
Edify Image是NVIDIA推出的一款图像生成模型,它能够生成具有像素级精确度的逼真图像内容。该模型采用级联像素空间扩散模型,并通过新颖的拉普拉斯扩散过程进行训练,该过程能够在不同频率带以不同的速率衰减图像信号。Edify Image支持多种应用,包括文本到图像合成、4K上采样、ControlNets、360° HDR全景图生成和图像定制微调。它代表了图像生成技术的最新进展,具有广泛的应用前景和重要的商业价值。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
训练无关的区域提示扩散变换器模型
Regional-Prompting-FLUX是一种训练无关的区域提示扩散变换器模型,它能够在无需训练的情况下,为扩散变换器(如FLUX)提供细粒度的组合文本到图像生成能力。该模型不仅效果显著,而且与LoRA和ControlNet高度兼容,能够在保持高速度的同时减少GPU内存的使用。
© 2024 AIbase 备案号:闽ICP备08105208号-14