需求人群:
"Gemma 2的目标受众是研究人员和开发者,他们需要高性能且易于集成的AI模型来构建和部署各种应用。无论是在学术研究还是商业产品开发中,Gemma 2都能提供所需的工具和资源,以负责任和高效的方式推进AI技术的发展。"
使用场景示例:
Navarasa利用Gemma创建了基于印度语言多样性的模型。
开发者可以使用Gemma 2进行检索增强型生成等常见任务。
学术研究人员可以申请Gemma 2 Academic Research Program,以获得Google Cloud积分来加速研究。
产品特色:
提供9亿和27亿参数大小的模型,满足不同需求。
在27亿参数版本中,性能可与两倍于其大小的模型竞争。
设计用于在Google Cloud TPU、NVIDIA A100和H100 GPU上高效运行。
与Hugging Face、NVIDIA和Ollama等合作伙伴轻松集成。
支持主要AI框架,如Hugging Face Transformers、JAX、PyTorch和TensorFlow。
通过Google Cloud的Vertex AI轻松部署和管理。
遵循内部安全流程,进行数据过滤和全面测试,以识别和减轻潜在偏见和风险。
使用教程:
访问Google AI Studio,无需硬件要求即可测试Gemma 2的27亿参数版本。
从Kaggle和Hugging Face Models下载Gemma 2的模型权重。
使用Vertex AI Model Garden进行部署和管理(即将推出)。
利用Keras和Hugging Face进行微调。
通过Gemma Cookbook学习如何使用Gemma 2构建应用和微调模型。
使用Responsible Generative AI Toolkit和LLM Comparator进行负责任的AI开发和模型评估。
对于Hugging Face Transformer用户,微调Gemma 2时需要使用支持注意力软封顶的_eager_注意力实现。
浏览量:23
最新流量情况
月访问量
7711.21k
平均访问时长
00:00:57
每次访问页数
1.95
跳出率
52.90%
流量来源
直接访问
32.89%
自然搜索
58.22%
邮件
0.08%
外链引荐
6.55%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
4.16%
英国
5.57%
印度
6.55%
日本
3.69%
美国
36.93%
下一代开源AI模型,性能卓越。
Gemma 2是谷歌DeepMind推出的下一代开源AI模型,提供9亿和27亿参数版本,具有卓越的性能和推理效率,支持在不同硬件上以全精度高效运行,大幅降低部署成本。Gemma 2在27亿参数版本中,提供了两倍于其大小模型的竞争力,并且可以在单个NVIDIA H100 Tensor Core GPU或TPU主机上实现,显著降低部署成本。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
基于Gradio的实时人像动画Web界面
AdvancedLivePortrait-WebUI是一个基于Gradio框架开发的Web界面,用于实时人像动画编辑。该技术允许用户通过上传图片来编辑人物的面部表情,实现了高效的肖像动画制作。它基于LivePortrait算法,利用深度学习技术进行面部特征的捕捉和动画制作,具有操作简便、效果逼真的优点。产品背景信息显示,它是由jhj0517开发的开源项目,适用于需要进行人像动画制作的专业人士和爱好者。目前该项目是免费的,并且开源,用户可以自由使用和修改。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
无审查限制的AI模型平台
FreedomGPT是一个提供多种AI模型的平台,包括无审查限制的模型,用户可以在一个熟悉的界面中轻松切换开源和专有模型。它允许用户在浏览器或直接在计算机上运行这些模型,无需注册,无需技术专长。此外,它还支持离线使用,保证了用户隐私和数据安全。FreedomGPT还提供了一个开放源代码的AI平台,鼓励社区成员共同参与构建。
AI即时推理解决方案,速度领先世界。
Cerebras Inference是Cerebras公司推出的AI推理平台,提供20倍于GPU的速度和1/5的成本。它利用Cerebras的高性能计算技术,为大规模语言模型、高性能计算等提供快速、高效的推理服务。该平台支持多种AI模型,包括医疗、能源、政府和金融服务等行业应用,具有开放源代码的特性,允许用户训练自己的基础模型或微调开源模型。
高效智能模型,助力AI研究与应用。
Hyper FLUX 8Steps LoRA是由字节跳动公司开发的一款基于LoRA技术的AI模型,旨在提高模型训练的效率和效果。它通过简化模型结构,减少训练步骤,同时保持或提升模型性能,为AI研究者和开发者提供了一个高效、易用的解决方案。
高性能AI模型加载器,大幅减少冷启动时间。
Mystic Turbo Registry是一款由Mystic.ai开发的高性能AI模型加载器,采用Rust语言编写,专门针对减少AI模型的冷启动时间进行了优化。它通过提高容器加载效率,显著减少了模型从启动到运行所需的时间,为用户提供了更快的模型响应速度和更高的运行效率。
新一代大模型架构,超越 Transformer。
RWKV 是一种革新的深度学习架构,结合了 RNN 和 Transformer 的最佳特性。它提供出色的性能,快速的推理和训练,并且不依赖自注意力机制,节省 VRAM,支持 ' 无限 ' 的上下文长度。RWKV 在多个语言和编码中表现出色,成为全球开发者的热门选择,推动了开源大语言模型的进步。
开源实现分布式低通信AI模型训练
OpenDiLoCo是一个开源框架,用于实现和扩展DeepMind的分布式低通信(DiLoCo)方法,支持全球分布式AI模型训练。它通过提供可扩展的、去中心化的框架,使得在资源分散的地区也能高效地进行AI模型的训练,这对于推动AI技术的普及和创新具有重要意义。
领先的LLM服务提供平台
Mooncake是Kimi的服务平台,由Moonshot AI提供,是一个领先的大型语言模型(LLM)服务。它采用了以KVCache为中心的解耦架构,通过分离预填充(prefill)和解码(decoding)集群,以及利用GPU集群中未充分利用的CPU、DRAM和SSD资源来实现KVCache的解耦缓存。Mooncake的核心是其KVCache中心调度器,它在确保满足延迟相关的服务级别目标(SLOs)要求的同时,平衡最大化整体有效吞吐量。与传统研究不同,Mooncake面对的是高度过载的场景,为此开发了基于预测的早期拒绝策略。实验表明,Mooncake在长上下文场景中表现出色,与基线方法相比,在某些模拟场景中吞吐量可提高525%,同时遵守SLOs。在实际工作负载下,Mooncake的创新架构使Kimi能够处理75%以上的请求。
文本到视频生成的开源模型,性能卓越。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
多语言AI模型,支持101种语言。
Aya是由Cohere For AI领导的全球性倡议,涉及119个国家的3000多名独立研究人员。Aya是一个尖端模型和数据集,通过开放科学推进101种语言的多语言AI。Aya模型能够理解并按照101种语言的指令执行任务,是迄今为止最大的开放科学机器学习项目之一,重新定义了研究领域,通过与全球独立研究人员合作,实现了完全开源的数据集和模型。
以低成本实现高性能的大型语言模型
JetMoE-8B是一个开源的大型语言模型,通过使用公共数据集和优化的训练方法,以低于10万美元的成本实现了超越Meta AI LLaMA2-7B的性能。该模型在推理时仅激活22亿参数,大幅降低了计算成本,同时保持了优异的性能。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
开放发布的Grok-1模型,拥有3140亿参数
Grok-1是由xAI从头开始训练的314亿参数的专家混合模型(Mixture-of-Experts)。该模型未经针对特定应用(如对话)的微调,是Grok-1预训练阶段的原始基础模型检查点。
从单张图片快速生成3D对象
TripoSR是由Stability AI与Tripo AI合作开发的3D对象重建模型,能够从单张图片在不到一秒钟的时间内生成高质量的3D模型。该模型在低推理预算下运行,无需GPU,适用于广泛的用户和应用场景。模型权重和源代码已在MIT许可下发布,允许商业化、个人和研究使用。
OOTDiffusion是一个高度可控的虚拟服装试穿开源工具
OOTDiffusion是一个基于潜在扩散模型的虚拟服装试穿开源工具。它支持半身和全身两种模型,可以实现服装的自然融合。用户可以通过调节各种参数实现对试穿效果的精确控制,满足不同的需求。该工具开源在GitHub上,已获得超过300星的关注。
快速准确的文件类型识别工具
Magika是一个由谷歌研发的快速准确的文件类型识别工具,基于深度学习模型,可以在毫秒级时间内识别二进制文件和文本文件类型。它的准确率明显高于其他现有工具,尤其在识别代码文件和配置文件时效果更佳。
开源分布式深度学习工具
The Microsoft Cognitive Toolkit(CNTK)是一个开源的商业级分布式深度学习工具。它通过有向图描述神经网络的计算步骤,支持常见的模型类型,并实现了自动微分和并行计算。CNTK支持64位Linux和Windows操作系统,可以作为Python、C或C++程序的库使用,也可以通过其自身的模型描述语言BrainScript作为独立的机器学习工具使用。
稳定可靠的开源Web服务器
Apache HTTP Server是一个稳定可靠的开源Web服务器,具有高度可配置性和可扩展性。它支持多种操作系统和编程语言,提供了强大的功能和性能。Apache HTTP Server被广泛用于构建和托管网站,是Web开发的首选工具。它采用了模块化的架构,可以轻松地进行功能扩展和定制。Apache HTTP Server是免费的,适用于个人和商业用途。
为数据中心打造的高效AI推理平台
d-Matrix是一家专注于AI推理技术的公司,其旗舰产品Corsair™是为数据中心设计的AI推理平台,能够提供极高的推理速度和极低的延迟。d-Matrix通过硬件软件协同设计,优化了Generative AI推理性能,推动了AI技术在数据中心的应用,使得大规模AI推理变得更加高效和可持续。
高效处理长文本的先进语言模型
Qwen2.5-Turbo是阿里巴巴开发团队推出的一款能够处理超长文本的语言模型,它在Qwen2.5的基础上进行了优化,支持长达1M个token的上下文,相当于约100万英文单词或150万中文字符。该模型在1M-token Passkey Retrieval任务中实现了100%的准确率,并在RULER长文本评估基准测试中得分93.1,超越了GPT-4和GLM4-9B-1M。Qwen2.5-Turbo不仅在长文本处理上表现出色,还保持了短文本处理的高性能,且成本效益高,每1M个token的处理成本仅为0.3元。
释放超级推理能力,提升AIME & MATH基准测试性能。
DeepSeek-R1-Lite-Preview是一款专注于提升推理能力的AI模型,它在AIME和MATH基准测试中展现了出色的性能。该模型具备实时透明的思考过程,并且计划推出开源模型和API。DeepSeek-R1-Lite-Preview的推理能力随着思考长度的增加而稳步提升,显示出更好的性能。产品背景信息显示,DeepSeek-R1-Lite-Preview是DeepSeek公司推出的最新产品,旨在通过人工智能技术提升用户的工作效率和问题解决能力。目前,产品提供免费试用,具体的定价和定位信息尚未公布。
基于Stable Diffusion 3.5 Large模型的IP适配器
SD3.5-Large-IP-Adapter是一个基于Stable Diffusion 3.5 Large模型的IP适配器,由InstantX Team研发。该模型能够将图像处理工作类比于文本处理,具有强大的图像生成能力,并且可以通过适配器技术进一步提升图像生成的质量和效果。该技术的重要性在于其能够推动图像生成技术的发展,特别是在创意工作和艺术创作领域。产品背景信息显示,该模型是由Hugging Face和fal.ai赞助的项目,并且遵循stabilityai-ai-community的许可协议。
© 2024 AIbase 备案号:闽ICP备08105208号-14