需求人群:
"Apple 智能适合所有使用iPhone、iPad和Mac的用户,特别是那些寻求提高日常工作效率、享受更智能的数字生活体验的消费者。"
使用场景示例:
用户通过Writing Tools快速校对和改写文档。
摄影师使用照片app的消除工具移除照片中的干扰元素。
商务人士利用Siri进行日程管理和快速回复邮件。
产品特色:
Writing Tools:全系统内文本改写、校对和摘要功能。
照片app的消除工具:识别并移除照片背景中令人分心的物体。
备忘录app和电话app:录制音频并转写为文字,生成通话摘要。
通知摘要:汇总各app的通知摘要,智能显示重要通知。
Siri:全新设计,更自然、灵活,支持文本和语音交流。
Image Playground:快速生成妙趣横生的图像。
Image Wand:将粗略草图变成美观图像。
使用教程:
更新至最新的iOS 18.1、iPadOS 18.1或macOS Sequoia 15.1。
在设备上启用Apple 智能功能。
使用Writing Tools进行文本的改写、校对和摘要。
在照片app中使用消除工具优化图片。
在备忘录app或电话app中录制音频并生成摘要。
设置通知摘要,以智能方式管理通知。
与Siri进行交互,使用语音或文本命令执行任务。
探索Image Playground和Image Wand创造个性化图像。
浏览量:25
最新流量情况
月访问量
10544.29k
平均访问时长
00:01:50
每次访问页数
4.54
跳出率
40.80%
流量来源
直接访问
42.86%
自然搜索
49.99%
邮件
0.04%
外链引荐
6.99%
社交媒体
0.08%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
88.53%
新加坡
0.83%
美国
2.67%
下一代智能体验,集成于iOS、iPadOS和macOS。
Apple 智能是苹果公司推出的新一代智能系统,它结合了生成式模型的强大力量和用户个人情况,带来实用且相关的智能功能。该系统深度集成于iOS 18.1、iPadOS 18.1和macOS Sequoia 15.1中,利用Apple芯片的力量理解并生成语言和图像、跨app执行操作、结合用户个人情况简化和加速日常任务,同时保护用户的隐私和安全。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
一种用于图像和文本数据的先进机器学习模型,专注于数据质量和透明度。
MetaCLIP是一个开源的机器学习模型,用于图像和文本的联合表示学习。它通过一个简单算法对CLIP数据进行筛选,不依赖于先前模型的过滤,从而提高了数据的质量和透明度。MetaCLIP的主要贡献包括无过滤的数据筛选、透明的训练数据分布、可扩展的算法和标准化的CLIP训练设置。该模型强调数据质量的重要性,并提供预训练模型,以支持研究人员和开发者进行控制实验和公平比较。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
由 Google 训练的 AI 模型,用于对野生动物相机陷阱图像中的物种进行分类。
Google CameraTrapAI 是一个用于野生动物图像分类的 AI 模型集合。它通过运动触发的野生动物相机(相机陷阱)拍摄的图像来识别动物物种。该技术对于野生动物监测和保护工作具有重要意义,能够帮助研究人员和保护工作者更高效地处理大量的图像数据,节省时间并提高工作效率。该模型基于深度学习技术开发,具有高准确性和强大的分类能力。
一个AI加持的剪贴板工具,提供智能辅助功能,提升复制粘贴效率。
PasteMe 是一款创新的桌面剪贴板工具,结合了人工智能技术,旨在提升用户在复制粘贴操作中的效率和便捷性。它通过AI辅助功能,如文本分析、格式转换和内容创作,为用户提供智能化的剪贴板体验。该工具适合需要高效处理文本的用户,如程序员、文案创作者和办公人员。它开源免费,具有高度的可定制性,能够满足不同用户的需求。
PaliGemma 2 mix 是一款多功能的视觉语言模型,适用于多种任务和领域。
PaliGemma 2 mix 是 Google 推出的升级版视觉语言模型,属于 Gemma 家族。它能够处理多种视觉和语言任务,如图像分割、视频字幕生成、科学问题回答等。该模型提供不同大小的预训练检查点(3B、10B 和 28B 参数),可轻松微调以适应各种视觉语言任务。其主要优点是多功能性、高性能和开发者友好性,支持多种框架(如 Hugging Face Transformers、Keras、PyTorch 等)。该模型适用于需要高效处理视觉和语言任务的开发者和研究人员,能够显著提升开发效率。
OmniParser 是一款通用屏幕解析工具,可将 UI 截图转换为结构化格式,提升基于 LLM 的 UI 代理性能。
OmniParser 是微软开发的一种先进的图像解析技术,旨在将不规则的屏幕截图转换为结构化的元素列表,包括可交互区域的位置和图标的功能描述。它通过深度学习模型,如 YOLOv8 和 Florence-2,实现了对 UI 界面的高效解析。该技术的主要优点在于其高效性、准确性和广泛的适用性。OmniParser 可以显著提高基于大型语言模型(LLM)的 UI 代理的性能,使其能够更好地理解和操作各种用户界面。它在多种应用场景中表现出色,如自动化测试、智能助手开发等。OmniParser 的开源特性和灵活的许可证使其成为开发者和研究人员的有力工具。
基于推理驱动的目标检测技术,通过文本提示实现类似人类精度的检测。
Agentic Object Detection 是一种先进的推理驱动目标检测技术,能够通过文本提示精确识别图像中的目标对象。它无需大量的自定义训练数据,即可实现类似人类精度的检测。该技术利用设计模式对目标的独特属性(如颜色、形状和纹理)进行深度推理,从而在各种场景中实现更智能、更精确的识别。其主要优点包括高精度、无需大量训练数据以及能够处理复杂场景。该技术适用于需要高精度图像识别的行业,如制造业、农业、医疗等领域,能够帮助企业提高生产效率和质量控制水平。产品目前处于试用阶段,用户可以免费试用体验其功能。
一个有趣的图像识别应用,用于判断上传的图片是否为热狗。
该产品利用图像识别技术,通过上传图片来判断是否为热狗。它基于深度学习模型,能够快速准确地识别热狗图像。这种技术展示了图像识别在日常生活中的趣味应用,同时也体现了人工智能技术的普及性和娱乐性。产品背景源于对AI技术的趣味探索,旨在通过简单的图像识别功能,让用户感受到AI的魅力。该产品目前为免费使用,主要面向喜欢尝试新技术和追求趣味体验的用户。
Qwen2.5-VL 是一款强大的视觉语言模型,能够理解图像和视频内容并生成相应文本。
Qwen2.5-VL 是 Qwen 团队推出的最新旗舰视觉语言模型,是视觉语言模型领域的重要进步。它不仅能够识别常见物体,还能分析图像中的文字、图表、图标等复杂内容,并支持对长视频的理解和事件定位。该模型在多个基准测试中表现出色,尤其在文档理解和视觉代理任务中具有显著优势,展现了强大的视觉理解和推理能力。其主要优点包括高效的多模态理解、强大的长视频处理能力以及灵活的工具调用能力,适用于多种应用场景。
一个Excel扩展插件,允许用户在Excel公式中使用大型语言模型(LLMs)。
Cellm 是一款创新的 Excel 扩展工具,它将大型语言模型(LLMs)的强大功能引入 Excel,使用户能够在单元格公式中直接调用 AI 模型来处理数据。这种技术的出现极大地提升了 Excel 在处理复杂文本数据时的效率和灵活性,尤其适用于需要对大量文本进行分类、提取、总结等操作的场景。Cellm 的主要优点是能够将 AI 技术与传统的电子表格工具无缝结合,无需用户具备编程技能即可使用。它支持多种主流的 LLM 模型,包括 Anthropic、Mistral、OpenAI 和 Google 的模型,以及本地运行的模型。Cellm 的目标是帮助用户自动化重复性任务,节省时间并提高工作效率。目前该工具免费提供给用户使用,主要面向需要高效处理文本数据的办公人员、研究人员和分析师。
朱雀大模型检测,精准识别AI生成图像,助力内容真实性鉴别。
朱雀大模型检测是腾讯推出的一款AI检测工具,主要功能是检测图片是否由AI模型生成。它经过大量自然图片和生成图片的训练,涵盖摄影、艺术、绘画等内容,可检测多类主流文生图模型生成图片。该产品具有高精度检测、快速响应等优点,对于维护内容真实性、打击虚假信息传播具有重要意义。目前暂未明确其具体价格,但从功能来看,主要面向需要进行内容审核、鉴别真伪的机构和个人,如媒体、艺术机构等。
ReaderLM v2是一个用于HTML转Markdown和JSON的前沿小型语言模型。
ReaderLM v2是由Jina AI推出的参数量为1.5B的小型语言模型,专门用于HTML转Markdown转换和HTML转JSON提取,具有卓越的准确性。该模型支持29种语言,能处理高达512K个token的输入和输出组合长度。它采用了新的训练范式和更高质量的训练数据,较前代产品在处理长文本内容和生成Markdown语法方面有重大进步,能熟练运用Markdown语法,擅长生成复杂元素。此外,ReaderLM v2还引入了直接HTML转JSON生成功能,允许用户根据给定的JSON架构从原始HTML中提取特定信息,消除了中间Markdown转换需求。
一个强大的OCR包,使用最先进的视觉语言模型提取图像中的文本。
ollama-ocr是一个基于ollama的光学字符识别(OCR)模型,能够从图像中提取文本。它利用先进的视觉语言模型,如LLaVA、Llama 3.2 Vision和MiniCPM-V 2.6,提供高精度的文本识别。该模型对于需要从图片中获取文本信息的场景非常有用,如文档扫描、图像内容分析等。它开源免费,易于集成到各种项目中。
Kimi 视觉模型可理解图片内容,包括文字、颜色和物体形状等。
Kimi 视觉模型是 Moonshot AI 开放平台提供的先进图像理解技术。它能够准确识别和理解图片中的文字、颜色和物体形状等内容,为用户提供强大的视觉分析能力。该模型具有高效、准确的特点,适用于多种场景,如图像内容描述、视觉问答等。其定价与 moonshot-v1 系列模型一致,根据模型推理的总 Tokens 计费,每张图片消耗的 Tokens 为固定值 1024。
一个由moondream创建的Hugging Face Space,用于展示注视点相关技术
Gaze Demo是一个基于Hugging Face Spaces平台的项目,由用户moondream创建。它主要展示与注视点(Gaze)相关的技术,可能涉及到图像识别、用户交互等领域。该技术的重要性在于能够通过分析用户的注视点来增强用户体验,例如在人机交互、广告投放、虚拟现实等场景中有广泛应用。产品目前处于展示阶段,未明确具体价格和详细定位。
一款通过生活场景学习日语的APP。
KaChiKa是一款旨在通过生活场景帮助用户学习日语的应用程序。它利用智能图像分析技术,将图片内容转化为日语单词和句子,以视觉记忆的方式辅助学习。该应用强调在日常生活中轻松掌握日语,适合各类日语学习者。应用提供免费下载,但包含应用内购买项目,如会员服务,价格分别为每月2.99美元和每年29.99美元。
先进的多模态大型语言模型,具备卓越的多模态推理能力。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
AnyParser Pro 是一款能够快速准确地从 PDF、PPT 和图像中提取内容的大型语言模型。
AnyParser Pro 是由 CambioML 开发的一款创新的文档解析工具,它利用大型语言模型(LLM)技术,能够快速准确地从 PDF、PPT 和图像文件中提取出完整的文本内容。该技术的主要优点在于其高效的处理速度和高精度的解析能力,能够显著提高文档处理的效率。AnyParser Pro 的背景信息显示,它是由 Y Combinator 孵化的初创公司 CambioML 推出的,旨在为用户提供一种简单易用且功能强大的文档解析解决方案。目前,该产品提供免费试用,用户可以通过获取 API 密钥来访问其功能。
一个强大的OCR(光学字符识别)工具
Ollama-OCR是一个使用最新视觉语言模型的OCR工具,通过Ollama提供技术支持,能够从图像中提取文本。它支持多种输出格式,包括Markdown、纯文本、JSON、结构化数据和键值对,并且支持批量处理功能。这个项目以Python包和Streamlit网络应用的形式提供,方便用户在不同场景下使用。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解、视觉定位等多项任务中展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
端侧全模态理解开源模型
Megrez-3B-Omni是由无问芯穹研发的端侧全模态理解模型,基于大语言模型Megrez-3B-Instruct扩展,具备图片、文本、音频三种模态数据的理解分析能力。该模型在图像理解、语言理解、语音理解方面均取得最优精度,支持中英文语音输入及多轮对话,支持对输入图片的语音提问,根据语音指令直接响应文本,在多项基准任务上取得了领先的结果。
基于强化学习技术的视觉思考模型,理科测试行业领先
Kimi视觉思考模型k1是基于强化学习技术打造的AI模型,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。在数学、物理、化学等基础科学学科的基准能力测试中,k1模型的表现超过了全球标杆模型。k1模型的发布标志着AI在视觉理解和思考能力上的新突破,尤其在处理图像信息和基础科学问题上展现出色的表现。
多模态大型语言模型,支持图像和文本理解
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
基于InternViT-6B-448px-V1-5的增强版视觉模型
InternViT-6B-448px-V2_5是一个基于InternViT-6B-448px-V1-5的视觉模型,通过使用ViT增量学习与NTP损失(阶段1.5),提升了视觉编码器提取视觉特征的能力,尤其是在大规模网络数据集中代表性不足的领域,如多语言OCR数据和数学图表等。该模型是InternVL 2.5系列的一部分,保留了与前代相同的“ViT-MLP-LLM”模型架构,并集成了新增量预训练的InternViT与各种预训练的LLMs,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
一款AI视觉语言模型,提供图像分析和描述服务。
InternVL是一个AI视觉语言模型,专注于图像分析和描述。它通过深度学习技术,能够理解和解释图像内容,为用户提供准确的图像描述和分析结果。InternVL的主要优点包括高准确性、快速响应和易于集成。该技术背景基于最新的人工智能研究,致力于提高图像识别的效率和准确性。目前,InternVL提供免费试用,具体价格和定位需要根据用户需求定制。
视觉语言模型增强工具,结合生成式视觉编码器和深度广度融合技术。
Florence-VL是一个视觉语言模型,通过引入生成式视觉编码器和深度广度融合技术,增强了模型对视觉和语言信息的处理能力。该技术的重要性在于其能够提升机器对图像和文本的理解,进而在多模态任务中取得更好的效果。Florence-VL基于LLaVA项目进行开发,提供了预训练和微调的代码、模型检查点和演示。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
© 2025 AIbase 备案号:闽ICP备08105208号-14