需求人群:
"Sparsh的目标受众是机器人学、人工智能和计算机视觉领域的研究者和开发者。它特别适合那些需要在触觉传感领域进行研究或开发应用的专业人士。Sparsh提供的自监督学习和多任务学习框架能够帮助他们提高模型的性能和数据效率,同时开源的特性也便于他们进行定制和二次开发。"
使用场景示例:
- 在机器人抓取任务中,使用Sparsh预测抓取力,以优化抓取策略。
- 在医疗辅助设备中,利用Sparsh进行触觉反馈,提高设备的交互性和安全性。
- 在工业检测领域,应用Sparsh进行产品质量检测,通过触觉数据分析提高检测精度。
产品特色:
- 自监督学习算法:Sparsh通过MAE、DINO和JEPA等自监督学习算法进行训练。
- 多触觉传感器支持:能够为DIGIT、Gelsight'17和Gelsight Mini等多种触觉传感器生成有用的表示。
- 下游任务性能优异:在TacBench提出的下游任务中,Sparsh的性能大幅度超越端到端模型。
- 数据高效训练:Sparsh可以支持新下游任务的数据高效训练。
- 预训练模型和数据集:提供PyTorch实现、预训练模型和数据集,方便研究者和开发者使用。
- 多下游任务支持:Sparsh支持包括力估计、滑移检测和姿态估计等多个下游任务。
- 代码和模型开源:Sparsh的代码和模型在GitHub上开源,便于社区贡献和改进。
使用教程:
1. 克隆Sparsh仓库到本地:使用git clone命令克隆Sparsh的GitHub仓库。
2. 创建环境:根据项目提供的environment.yml文件创建conda环境,并激活。
3. 下载数据集:按照指南下载并设置预训练数据集。
4. 训练模型:使用train.py脚本和配置文件开始训练Sparsh模型。
5. 微调模型:针对特定的下游任务,使用train_task.py脚本微调Sparsh模型。
6. 测试模型:使用test_task.py脚本测试训练好的模型,并评估性能。
7. 可视化演示:运行demo_forcefield.py脚本,进行力场可视化演示。
浏览量:22
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
自监督触觉表示,用于基于视觉的触觉传感。
Sparsh是一系列通过自监督算法(如MAE、DINO和JEPA)训练的通用触觉表示。它能够为DIGIT、Gelsight'17和Gelsight Mini生成有用的表示,并在TacBench提出的下游任务中大幅度超越端到端模型,同时能够为新下游任务的数据高效训练提供支持。Sparsh项目包含PyTorch实现、预训练模型和与Sparsh一起发布的数据集。
自监督学习框架,用于音视觉语音处理
AV-HuBERT是一个自监督表示学习框架,专门用于音视觉语音处理。它在LRS3音视觉语音基准测试中实现了最先进的唇读、自动语音识别(ASR)和音视觉语音识别结果。该框架通过掩蔽多模态聚类预测来学习音视觉语音表示,并且提供了鲁棒的自监督音视觉语音识别。
构建无代码监督学习模型
Supervised AI是一个无代码AI开发平台,可帮助用户构建监督学习模型。利用OpenAI的GPT引擎,结合用户的数据,构建高准确性的AI模型。用户可以使用Supervised API将AI模型集成到任何地方。
一种自监督的视听特征对齐模型。
DenseAV是一种新颖的双编码器定位架构,通过观看视频学习高分辨率、语义有意义的视听对齐特征。它能够无需明确定位监督即可发现单词的“意义”和声音的“位置”,并且自动发现并区分这两种关联类型。DenseAV的定位能力来自于一种新的多头特征聚合操作符,它直接比较密集的图像和音频表示进行对比学习。此外,DenseAV在语义分割任务上显著超越了先前的艺术水平,并且在使用参数少于一半的情况下,在跨模态检索上超越了ImageBind。
一种基于潜在扩散模型的自监督层次化化妆迁移技术
SHMT是一种自监督的层次化化妆迁移技术,通过潜在扩散模型实现。该技术能够在不需要显式标注的情况下,将一种面部妆容自然地迁移到另一种面部上。其主要优点在于能够处理复杂的面部特征和表情变化,提供高质量的迁移效果。该技术在NeurIPS 2024上被接受,展示了其在图像处理领域的创新性和实用性。
具有人类级别精度的人工触觉传感器
Digit 360是由Meta FAIR发布的人工手指形状的触觉传感器,它能够以人类级别的精度数字化触觉。该传感器拥有超过18种独特的传感特性,允许研究人员结合使用各种传感技术或单独隔离信号进行深入分析。Digit 360在检测空间细节上达到了7微米,力量检测上达到了1毫牛,响应速度是人的30倍,为触觉传感技术树立了新的标准。
学习模型间字符串关系,检查视觉世界
这篇论文系统评估了大型语言模型(LLMs)生成和识别逐渐复杂的视觉概念的能力,并展示了如何使用文本模型训练初步的视觉表示学习系统。虽然语言模型不能直接处理像素级的视觉信息,但使用代码表示图像进行研究。LLM 生成的图像虽然不像自然图像,但在图像生成和纠正方面的结果表明,准确建模字符串可以教会语言模型许多关于视觉世界的方面。此外,利用文本模型生成的图像进行自监督视觉表示学习的实验,突出了只使用 LLMs 就能训练能够对自然图像进行语义评估的视觉模型的潜力。
Miqu 1-70b是一个开源的大规模语言模型
Miqu 1-70b是一个开源大规模语言模型,采用了新颖的自我监督学习方法,可以处理各种自然语言任务。该模型参数量达170亿,支持多种prompt格式,可fine-tuning生成高质量的文本。其强大的理解和生成能力,使其可广泛应用于聊天机器人、文本摘要、问答系统等领域。
提高大学生自学效率和质量的智能学习助手
夸克App推出的AI学习助手基于自研大模型,通过智能化的解题思路和讲解方式,提升大学生自学效率和质量。采用夸克宝宝的虚拟形象进行题目讲解,提供“考点分析”“详解步骤”“答案总结”等详细内容。并通过夸克网盘实现学习资料备份和使用,以及夸克扫描王提取核心复习内容。覆盖英语等学科的选择题、填空题、阅读题等常考题型,后续将加入数学等学科。
机器人硬件平台,集成传感器和末端执行器。
Digit Plexus是一个机器人硬件平台,旨在为各种机器人手集成触觉传感器提供标准化的硬件-软件解决方案。该平台能够将基于视觉和基于皮肤的触觉传感器(如Digit、Digit 360和ReSkin)整合到控制板中,并通过单根电缆将所有数据编码传输到主机电脑。这种集成方式允许无缝的数据收集、控制和分析。产品背景信息显示,Digit Plexus与Wonik Robotics合作开发了基于该平台的下一代Allegro Hand,并且可以通过特定链接表达早期访问的兴趣。
UIED用户体验学习平台是由UIED设计团队创建的专注于AIGC技术领域的学习平台。
UIED用户体验学习平台是由UIED设计团队创建的专注于AIGC技术领域的学习平台。该平台旨在为希望深入了解AIGC和AI技术的设计师提供全面的教程、案例分析和实战项目。通过UIED,设计师可以学习AIGC工具的操作方法、探索AI在设计中的应用案例,并利用这些技术优化设计流程,提升创作质量。
机器学习加速 API
DirectML 是Windows上的机器学习平台API,为硬件供应商提供了一个通用的抽象层来暴露他们的机器学习加速器。它可以与任何兼容DirectX 12的设备一起使用,包括GPU和NPU。通过减少编写机器学习代码的成本,DirectML使得AI功能集成更加容易。
1.58-bit量化的先进文本到图像生成模型
1.58-bit FLUX是一种先进的文本到图像生成模型,通过使用1.58位权重(即{-1, 0, +1}中的值)来量化FLUX.1-dev模型,同时保持生成1024x1024图像的可比性能。该方法无需访问图像数据,完全依赖于FLUX.1-dev模型的自监督。此外,开发了一种定制的内核,优化了1.58位操作,实现了模型存储减少7.7倍,推理内存减少5.1倍,并改善了推理延迟。在GenEval和T2I Compbench基准测试中的广泛评估表明,1.58-bit FLUX在保持生成质量的同时显著提高了计算效率。
端到端开源机器学习平台
TensorFlow是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展。在TensorFlow机器学习框架下,开发者能够轻松地构建和部署由机器学习提供支持的应用。
Python机器学习库
scikit-learn是一个简单高效的机器学习库,提供了丰富的机器学习算法和工具,可用于分类、回归、聚类、降维等任务。它基于NumPy、SciPy和matplotlib构建,具有易用性、性能优越以及可重复使用的特点。scikit-learn开源可商用,采用BSD许可证。
基于《Factorio》游戏的大语言模型测试与学习环境
Factorio Learning Environment(FLE)是基于《Factorio》游戏构建的新型框架,用于评估大型语言模型(LLMs)在长期规划、程序合成和资源优化方面的能力。随着LLMs逐渐饱和现有基准测试,FLE提供了新的开放式评估方式。它的重要性在于能让研究人员更全面、深入地了解LLMs的优势与不足。主要优点是提供了开放式且难度呈指数级增长的挑战,拥有结构化任务和开放式任务两种评估协议。该项目由Jack Hopkins等人开发,以开源形式发布,免费使用,定位是推动AI研究人员对复杂、开放式领域中智能体能力的研究。
玩乐机器学习,成为钢琴大师!
Piano Genie是一个基于机器学习的钢琴模拟器。使用键盘上的数字键或触摸屏上的彩色块来演奏钢琴。按下空格键控制延音踏板。你越像真正的钢琴家一样弹奏,旋律(和你自己)就会越好听。Piano Genie使用magenta.js构建。
简化机器学习模型的训练和部署
Sagify是一个命令行工具,可以在几个简单步骤中训练和部署机器学习/深度学习模型在AWS SageMaker上!它消除了配置云实例进行模型训练的痛苦,简化了在云上运行超参数作业的过程,同时不再需要将模型交给软件工程师进行部署。Sagify提供了丰富的功能,包括AWS账户配置、Docker镜像构建、数据上传、模型训练、模型部署等。它适用于各种使用场景,帮助用户快速构建和部署机器学习模型。
视频编辑中的手-物交互意识
HOI-Swap是一个基于扩散模型的视频编辑框架,专注于处理视频编辑中手与物体交互的复杂性。该模型通过自监督训练,能够在单帧中实现物体交换,并学习根据物体属性变化调整手的交互模式,如手的抓握方式。第二阶段将单帧编辑扩展到整个视频序列,通过运动对齐和视频生成,实现高质量的视频编辑。
将静态肖像和输入音频转化为生动的动画对话视频
AniTalker是一个创新的框架,它能够从单一的肖像生成逼真的对话面部动画。它通过两个自监督学习策略增强了动作表现力,同时通过度量学习开发了一个身份编码器,有效减少了对标记数据的需求。AniTalker不仅能够创建详细且逼真的面部动作,还强调了其在现实世界应用中制作动态头像的潜力。
无代码机器学习平台
NextBrain AI是一款无代码机器学习平台,让任何人都能轻松训练机器学习模型并将数据转化为有价值的见解,指导决策。它提供简单有效的分析和宝贵的洞察力,无需编程知识。同时支持Google Sheets插件和Web应用,选择适合您的方式开始训练机器学习模型吧!
苹果芯片高效灵活机器学习
MLX是一种类似NumPy的数组框架,专为在苹果芯片上进行高效灵活的机器学习而设计,由苹果机器学习研究团队提供。Python API与NumPy紧密相似,但也有一些例外。MLX还具有完整的C++ API,紧密遵循Python API。MLX与NumPy的主要区别包括:可组合的函数转换、惰性计算和多设备支持。MLX的设计灵感来自PyTorch、Jax和ArrayFire等框架。与这些框架不同的是,MLX采用统一内存模型。MLX中的数组位于共享内存中,可以在任何受支持的设备类型(CPU、GPU等)上执行操作,而无需执行数据复制。
探索YouTube上最新的机器学习/人工智能课程
ML-YouTube-Courses是一个开源项目,致力于整理和索引YouTube上最新的、最好的机器学习课程。项目包含各种主题的课程,如机器学习、深度学习、自然语言处理、计算机视觉等,涵盖基础知识和前沿技术。该项目帮助开发者和学习者高效地发现优质的在线教程。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
简化机器学习云服务
Deploifai是一种管理机器学习项目云端的工具,让您可以专注于解决方案。它提供简化的云服务,帮助您管理和部署机器学习模型,包括数据集管理、模型训练、部署和监控。Deploifai的优势在于简化了复杂的基础设施设置,提供易于使用的界面和工具,以及高度可扩展的计算和存储资源。价格根据使用量和功能等级而定,适用于个人开发者和企业团队。
一键部署机器学习模型到生产环境
PoplarML 是一个能够以极低的工程成本部署可扩展的机器学习系统到生产环境的平台。它提供了一键部署的功能,可无缝地将机器学习模型部署到一组GPU上。用户可以通过REST API端点实时调用模型进行推断。PoplarML 支持各种深度学习框架,如Tensorflow、Pytorch和JAX。除此之外,PoplarML 还提供了多项优势,包括高效的实时推断、自动扩展能力以适应流量需求、灵活的部署选项等。定价方面,请访问官方网站获取详细信息。
零样本图像编辑,一键模仿参考图像风格
MimicBrush是一种创新的图像编辑模型,它允许用户通过指定源图像中的编辑区域和提供一张野外参考图像来实现零样本图像编辑。该模型能够自动捕捉两者之间的语义对应关系,并一次性完成编辑。MimicBrush的开发基于扩散先验,通过自监督学习捕捉不同图像间的语义关系,实验证明其在多种测试案例下的有效性及优越性。
© 2025 AIbase 备案号:闽ICP备08105208号-14