需求人群:
"该模型适合需要在资源受限的设备上运行多模态任务的开发者和研究人员,尤其是那些需要快速处理图像和文本输入以生成文本输出的场景,例如移动应用、嵌入式设备或对实时性要求较高的应用。"
使用场景示例:
在移动设备上快速生成图像描述,帮助用户理解图像内容。
为图像识别应用提供视觉问答功能,增强用户体验。
在嵌入式设备上实现简单的文本转录功能,用于图像中的文字识别。
产品特色:
支持图像描述:能够生成准确的图像内容描述。
视觉问答:可以回答与图像相关的问题。
文本转录:能够转录图像中的文本内容。
轻量级架构:适合在设备端运行,占用资源少。
高效图像编码:通过大尺寸图像块和视觉令牌编码提升效率。
支持多种多模态任务:如基于视觉内容的故事创作。
开源许可:基于 Apache 2.0 许可,便于开发者自由使用和改进。
低内存需求:仅需 1.23GB GPU 内存即可运行单张图像的推理。
使用教程:
1. 使用 transformers 库加载模型和处理器:通过 AutoProcessor 和 AutoModelForVision2Seq 加载预训练模型。
2. 准备输入数据:将图像和文本查询组合为输入消息。
3. 处理输入:使用处理器将输入数据转换为模型可接受的格式。
4. 运行推理:将处理后的输入传递给模型,生成文本输出。
5. 解码输出:将生成的文本 ID 解码为可读的文本内容。
6. 根据需要对模型进行微调:使用提供的微调教程针对特定任务优化模型性能。
浏览量:6
最新流量情况
月访问量
21315.89k
平均访问时长
00:05:02
每次访问页数
5.22
跳出率
45.50%
流量来源
直接访问
49.07%
自然搜索
35.51%
邮件
0.03%
外链引荐
12.37%
社交媒体
3.00%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.90%
印度
8.10%
日本
3.61%
俄罗斯
5.37%
美国
18.06%
SmolVLM-500M 是一个轻量级多模态模型,能够处理图像和文本输入并生成文本输出。
SmolVLM-500M 是由 Hugging Face 开发的轻量级多模态模型,属于 SmolVLM 系列。该模型基于 Idefics3 架构,专注于高效的图像和文本处理任务。它能够接受任意顺序的图像和文本输入,生成文本输出,适用于图像描述、视觉问答等任务。其轻量级架构使其能够在资源受限的设备上运行,同时保持强大的多模态任务性能。该模型采用 Apache 2.0 许可证,支持开源和灵活的使用场景。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
多模态大型语言模型,提升视觉和语言的综合理解能力
InternVL2_5-1B-MPO是一个多模态大型语言模型(MLLM),它基于InternVL2.5和混合偏好优化(MPO)构建,展示了优越的整体性能。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在模型架构上保留了与InternVL 2.5及其前身相同的“ViT-MLP-LLM”范式,并引入了对多图像和视频数据的支持。该模型在多模态任务中表现出色,能够处理包括图像描述、视觉问答等多种视觉语言任务。
一个通用的多模态模型,可用于问答、图像描述等任务
HuggingFaceM4/idefics-80b-instruct是一个开源的多模态模型,它可以接受图像和文本的输入,输出相关的文本内容。该模型在视觉问答、图像描述等任务上表现出色,是一个通用的智能助手模型。它由Hugging Face团队开发,基于开放数据集训练,提供免费使用。
赋予LLM查看和绘图的能力
SEED是一个大规模预训练的模型,通过对交错的文本和视觉数据进行预训练和指导调整,展现了在广泛的多模态理解和生成任务上的出色性能。SEED还具有组合性新兴能力,例如多轮上下文多模态生成,就像您的AI助手一样。SEED还包括SEED Tokenizer v1和SEED Tokenizer v2,它们可以将文本转换为图像。
一款基于StyleTTS 2架构的先进AI文本转语音模型,拥有8200万参数,提供高质量的自然语音合成。
Kokoro TTS是一款专注于文本转语音的AI模型,其主要功能是将文本内容转换为自然流畅的语音输出。该模型基于StyleTTS 2架构,拥有8200万参数,能够在保持高质量语音合成的同时,提供高效的性能和较低的资源消耗。其多语言支持和可定制的语音包使其能够满足不同用户在多种场景下的需求,如制作有声读物、播客、培训视频等,尤其适合教育领域,帮助提升内容的可访问性和吸引力。此外,Kokoro TTS是开源的,用户可以免费使用,这使得它在成本效益上具有显著优势。
SmolVLM-256M 是世界上最小的多模态模型,可高效处理图像和文本输入并生成文本输出。
SmolVLM-256M 是由 Hugging Face 开发的多模态模型,基于 Idefics3 架构,专为高效处理图像和文本输入而设计。它能够回答关于图像的问题、描述视觉内容或转录文本,且仅需不到 1GB 的 GPU 内存即可运行推理。该模型在多模态任务上表现出色,同时保持轻量化架构,适合在设备端应用。其训练数据来自 The Cauldron 和 Docmatix 数据集,涵盖文档理解、图像描述等多领域内容,使其具备广泛的应用潜力。目前该模型在 Hugging Face 平台上免费提供,旨在为开发者和研究人员提供强大的多模态处理能力。
一个用于智能设备等的多模态原生代理框架。
OmAgent是一个多模态原生代理框架,用于智能设备等。它采用分治算法高效解决复杂任务,能预处理长视频并以类似人类的精度进行问答,还能基于用户请求和可选天气条件提供个性化服装建议等。目前官网未明确显示价格,但从功能来看,主要面向需要高效任务处理和智能交互的用户群体,如开发者、企业等。
基于Kokoro和ONNX运行时的文本到语音(TTS)项目。
kokoro-onnx是一个基于Kokoro模型和ONNX运行时的文本到语音(TTS)项目。它支持英语,并计划支持法语、日语、韩语和中文。该模型在macOS M1上具有接近实时的快速性能,并提供多种声音选择,包括耳语。模型轻量级,约为300MB(量化后约为80MB)。该项目在GitHub上开源,采用MIT许可证,方便开发者集成和使用。
开源的视觉语言模型,可在多种设备上运行。
Moondream AI是一个开源的视觉语言模型,具有强大的多模态处理能力。它支持多种量化格式,如fp16、int8、int4,能够在服务器、PC、移动设备等多种目标设备上进行GPU和CPU优化推理。其主要优点包括快速、高效、易于部署,且采用Apache 2.0许可证,允许用户自由使用和修改。Moondream AI的定位是为开发者提供一个灵活、高效的人工智能解决方案,适用于需要视觉和语言处理能力的各种应用场景。
PaliGemma 2是一款强大的视觉-语言模型,支持多种语言的图像和文本处理任务。
PaliGemma 2是由Google开发的视觉-语言模型,它结合了SigLIP视觉模型和Gemma 2语言模型的能力,能够处理图像和文本输入,并生成相应的文本输出。该模型在多种视觉-语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构以及在多种任务上的优异性能。PaliGemma 2的开发背景是为了解决视觉和语言之间的复杂交互问题,帮助研究人员和开发者在相关领域取得突破。
PaliGemma 2是一个强大的视觉-语言模型,支持多种视觉语言任务。
PaliGemma 2是一个由Google开发的视觉-语言模型,继承了Gemma 2模型的能力,能够处理图像和文本输入并生成文本输出。该模型在多种视觉语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构和广泛的适用性。该模型适用于需要处理视觉和文本数据的各种应用场景,如社交媒体内容生成、智能客服等。
VITA-1.5: 实时视觉和语音交互的GPT-4o级多模态大语言模型
VITA-1.5 是一款开源的多模态大语言模型,旨在实现接近实时的视觉和语音交互。它通过显著降低交互延迟和提升多模态性能,为用户提供更流畅的交互体验。该模型支持英语和中文,适用于多种应用场景,如图像识别、语音识别和自然语言处理等。其主要优点包括高效的语音处理能力和强大的多模态理解能力。
一个为数据科学设计的超级IDE,支持大规模并发处理.
Zasper 是一个专为数据科学设计的集成开发环境(IDE),它从底层设计支持大规模并发处理,具有极小的内存占用、卓越的速度以及处理大量并发连接的能力。它非常适合运行类似 Jupyter notebook 的 REPL 风格的数据应用。Zasper 的主要优点在于其高效的并发处理能力和轻量级的资源占用,使其在数据科学领域具有重要的应用价值。目前,Zasper 提供的是开源版本,适合数据科学家和开发者使用。
开源的端到端自动驾驶多模态模型
OpenEMMA是一个开源项目,复现了Waymo的EMMA模型,提供了一个端到端框架用于自动驾驶车辆的运动规划。该模型利用预训练的视觉语言模型(VLMs)如GPT-4和LLaVA,整合文本和前视摄像头输入,实现对未来自身路径点的精确预测,并提供决策理由。OpenEMMA的目标是为研究人员和开发者提供易于获取的工具,以推进自动驾驶研究和应用。
一款高效率的2.4亿参数轻量级语言模型
YuLan-Mini是由中国人民大学AI Box团队开发的一款轻量级语言模型,具有2.4亿参数,尽管仅使用1.08T的预训练数据,但其性能可与使用更多数据训练的行业领先模型相媲美。该模型特别擅长数学和代码领域,为了促进可复现性,团队将开源相关的预训练资源。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
一个集成了Gemini多模态直播和WebRTC技术的单文件应用
Gemini Multimodal Live + WebRTC是一个展示如何构建简单语音AI应用的示例项目,使用Gemini多模态直播API和WebRTC技术。该产品的主要优点包括低延迟、更好的鲁棒性、易于实现核心功能,并且兼容多种平台和语言的SDK。产品背景信息显示,这是一个开源项目,旨在通过WebRTC技术提升实时媒体连接的性能,并简化开发流程。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
开源AI模型,可微调、蒸馏、部署。
Llama 3.2是一系列大型语言模型(LLMs),预训练和微调在1B和3B大小的多语言文本模型,以及11B和90B大小的文本和图像输入输出文本的模型。这些模型可以用于开发高性能和高效率的应用。Llama 3.2的模型可以在移动设备和边缘设备上运行,支持多种编程语言,并且可以通过Llama Stack构建代理应用程序。
多模态12B参数模型,结合视觉编码器处理图像和文本。
Pixtral-12B-2409是由Mistral AI团队开发的多模态模型,包含12B参数的多模态解码器和400M参数的视觉编码器。该模型在多模态任务中表现出色,支持不同尺寸的图像,并在文本基准测试中保持最前沿的性能。它适用于需要处理图像和文本数据的高级应用,如图像描述生成、视觉问答等。
开源多模态大型语言模型,支持实时语音输入和流式音频输出。
Mini-Omni是一个开源的多模态大型语言模型,能够实现实时的语音输入和流式音频输出的对话能力。它具备实时语音到语音的对话功能,无需额外的ASR或TTS模型。此外,它还可以在思考的同时进行语音输出,支持文本和音频的同时生成。Mini-Omni通过'Audio-to-Text'和'Audio-to-Audio'的批量推理进一步增强性能。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
专为LLM和RAG应用设计的高效网络爬虫
HyperCrawl是第一个为LLM(大型语言模型)和RAG(检索增强生成模型)应用设计的网络爬虫,旨在开发强大的检索引擎。它通过引入多种先进方法,显著减少了域名的爬取时间,提高了检索过程的效率。HyperCrawl是HyperLLM的一部分,致力于构建未来LLM的基础设施,这些模型需要更少的计算资源,并且性能超越现有的任何模型。
Falcon 2 是一款开源、多语言、多模态的模型,具备图像到文本转换能力。
Falcon 2 是一款具有创新功能的生成式 AI 模型,为我们创造了一种充满可能性的未来路径,只有想象力才是限制。Falcon 2 采用开源许可证,具备多语言和多模态的能力,其中独特的图像到文本转换功能标志着 AI 创新的重大进展。
Meta 新一代开源大型语言模型,性能卓越
Meta Llama 3是Meta公司推出的新一代开源大型语言模型,性能卓越,在多项行业基准测试中表现出色。它可支持广泛的使用场景,包括改善推理能力等新功能。该模型将在未来支持多语种、多模态,提供更长的上下文窗口和整体性能提升。Llama 3秉承开放理念,将被部署在主要云服务、托管和硬件平台上,供开发者和社区使用。
以低成本实现高性能的大型语言模型
JetMoE-8B是一个开源的大型语言模型,通过使用公共数据集和优化的训练方法,以低于10万美元的成本实现了超越Meta AI LLaMA2-7B的性能。该模型在推理时仅激活22亿参数,大幅降低了计算成本,同时保持了优异的性能。
© 2025 AIbase 备案号:闽ICP备08105208号-14