需求人群:
"目标受众为研究人员、开发者和企业,特别是那些需要在视觉语言领域进行模型训练和应用的专业人士。该产品通过提供先进的视觉语言模型技术和优化策略,帮助用户提高模型性能,减少计算资源消耗,加速研发进程。"
使用场景示例:
在图像描述任务中,使用POINTS-Yi-1.5-9B-Chat生成详细的图像描述。
在视觉问答任务中,利用模型回答与图像相关的问题。
在视觉指令执行任务中,根据用户提供的图像和指令,模型执行相应的操作。
产品特色:
集成最新的视觉语言模型技术,如CapFusion、Dual Vision Encoder和Dynamic High Resolution。
使用困惑度作为指标过滤预训练数据集,减少数据集大小并提高模型性能。
应用模型汤技术,对不同视觉指令调整数据集微调后的模型进行整合,进一步提升性能。
在多个基准测试中表现优异,包括MMBench-dev-en、MathVista、HallucinationBench等。
支持Image-Text-to-Text的多模态交互,适用于需要视觉和语言结合的场景。
提供了详细的使用示例和代码,方便开发者快速上手和集成。
使用教程:
1. 安装必要的库,如transformers、PIL和torch。
2. 导入AutoModelForCausalLM和AutoTokenizer,以及CLIPImageProcessor。
3. 准备图像数据,可以是网络图片或本地。图片。
4. 加载模型和分词器,指定模型路径为'WePOINTS/POINTS-Yi-1-5-9B-Chat'。
5. 配置生成参数,如最大新令牌数、温度、top_p和beam数。
6. 使用模型的chat方法,传入图像、提示、分词器、图像处理器等参数。
7. 获取模型输出并打印结果。
浏览量:3
最新流量情况
月访问量
20899.84k
平均访问时长
00:04:57
每次访问页数
5.24
跳出率
46.04%
流量来源
直接访问
48.28%
自然搜索
36.58%
邮件
0.03%
外链引荐
12.01%
社交媒体
3.07%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.07%
印度
7.93%
日本
3.42%
俄罗斯
5.95%
美国
18.10%
视觉语言模型的最新进展,集成微信AI的新技术
POINTS-Yi-1.5-9B-Chat是一个视觉语言模型,它集成了最新的视觉语言模型技术和微信AI提出的新技术。该模型在预训练数据集过滤、模型汤(Model Soup)技术等方面有显著创新,能够显著减少预训练数据集的大小并提高模型性能。它在多个基准测试中表现优异,是视觉语言模型领域的一个重要进展。
视觉语言模型的最新进展
POINTS-Qwen-2-5-7B-Chat是一个集成了视觉语言模型最新进展和新技巧的模型,由微信AI的研究人员提出。它通过预训练数据集筛选、模型汤等技术,显著提升了模型性能。这个模型在多个基准测试中表现优异,是视觉语言模型领域的一个重要进步。
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
一款多功能大型视觉语言模型
InternLM-XComposer-2.5是一款支持长上下文输入和输出的多功能大型视觉语言模型。它在各种文本图像理解和创作应用中表现出色,实现了与GPT-4V相当的水平,但仅使用了7B的LLM后端。该模型通过24K交错图像文本上下文进行训练,能够无缝扩展到96K长上下文,通过RoPE外推。这种长上下文能力使其在需要广泛输入和输出上下文的任务中表现突出。此外,它还支持超高分辨率理解、细粒度视频理解、多轮多图像对话、网页制作以及撰写高质量图文文章等功能。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
苹果发布多模态LLM模型MM1
苹果发布了自己的大语言模型MM1,这是一个最高有30B规模的多模态LLM。通过预训练和SFT,MM1模型在多个基准测试中取得了SOTA性能,展现了上下文内预测、多图像推理和少样本学习能力等吸引人的特性。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
高效多模态大型语言模型
TinyGPT-V 是一种高效的多模态大型语言模型,通过使用小型骨干网络来实现。它具有强大的语言理解和生成能力,适用于各种自然语言处理任务。TinyGPT-V 采用 Phi-2 作为预训练模型,具备出色的性能和效率。
端侧全模态理解模型,软硬协同释放无穹端侧智能
Infini-Megrez是一个由无问芯穹研发的端侧全模态理解模型,它基于Megrez-3B-Instruct扩展,具备图片、文本、音频三种模态数据的理解分析能力,并在图像理解、语言理解和语音理解三个方面均取得最优精度。该模型通过软硬协同优化,确保了各结构参数与主流硬件高度适配,推理速度领先同精度模型最大300%。它简单易用,采用最原始的LLaMA结构,开发者无需任何修改便可将模型部署于各种平台,最小化二次开发复杂度。此外,Infini-Megrez还提供了完整的WebSearch方案,使模型可以自动决策搜索调用时机,在搜索和对话中自动切换,并提供更好的总结效果。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解、视觉定位等多项任务中展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
WePOINTS项目,提供多模态模型的统一框架
WePOINTS是由微信AI团队开发的一系列多模态模型,旨在创建一个统一框架,容纳各种模态。这些模型利用最新的多模态模型进展和技术,推动内容理解和生成的无缝统一。WePOINTS项目不仅提供了模型,还包括了预训练数据集、评估工具和使用教程,是多模态人工智能领域的重要贡献。
先进的多模态理解模型,融合视觉与语言能力。
DeepSeek-VL2是一系列大型Mixture-of-Experts视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等任务上展现出卓越的能力。DeepSeek-VL2包含三个变体:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集和MoE基础模型相比,达到了竞争性或最先进的性能。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-4B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上进行了核心模型架构的维护,并在训练和测试策略以及数据质量上进行了显著增强。该模型在处理图像、文本到文本的任务中表现出色,特别是在多模态推理、数学问题解决、OCR、图表和文档理解等方面。作为开源模型,它为研究人员和开发者提供了强大的工具,以探索和构建基于视觉和语言的智能应用。
多模态大型语言模型,支持图像与文本的深度交互
InternVL 2.5 是一个先进的多模态大型语言模型系列,它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,维持了其核心模型架构。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5 支持多图像和视频数据,具备动态高分辨率训练方法,能够在处理多模态数据时提供更好的性能。
多模态大型语言模型,支持图像和文本理解
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
下一代开发者AI工具,提升开发效率与应用互动性
Gemini 2.0 Flash是Google推出的下一代AI模型,旨在赋予开发者构建未来AI应用的能力。自去年12月发布Gemini 1.0以来,数百万开发者已使用Google AI Studio和Vertex AI构建了支持109种语言的Gemini应用。Gemini 2.0 Flash在性能上是1.5 Pro的两倍,同时实现了更强的性能,包括新的多模态输出和原生工具使用。它通过Gemini API在Google AI Studio和Vertex AI中提供实验性访问,并计划在明年初全面上市。Gemini 2.0 Flash的主要优点包括更好的性能、新的输出模态、原生工具使用和多模态实时API,这些功能将进一步提升开发者的工作效率和应用的互动性。
Google新一代AI模型,开启智能助理新时代。
Gemini 2.0是Google DeepMind推出的最新AI模型,旨在为“智能助理时代”提供支持。该模型在多模态能力上进行了升级,包括原生图像和音频输出以及工具使用能力,使得构建新的AI智能助理更加接近通用助理的愿景。Gemini 2.0的发布,标志着Google在AI领域的深入探索和持续创新,通过提供更强大的信息处理和输出能力,使得信息更加有用,为用户带来更高效和便捷的体验。
大规模多模态推理与指令调优平台
MAmmoTH-VL是一个大规模多模态推理平台,它通过指令调优技术,显著提升了多模态大型语言模型(MLLMs)在多模态任务中的表现。该平台使用开放模型创建了一个包含1200万指令-响应对的数据集,覆盖了多样化的、推理密集型的任务,并提供了详细且忠实的理由。MAmmoTH-VL在MathVerse、MMMU-Pro和MuirBench等基准测试中取得了最先进的性能,展现了其在教育和研究领域的重要性。
基于InternViT-6B-448px-V1-5的增强版视觉模型
InternViT-6B-448px-V2_5是一个基于InternViT-6B-448px-V1-5的视觉模型,通过使用ViT增量学习与NTP损失(阶段1.5),提升了视觉编码器提取视觉特征的能力,尤其是在大规模网络数据集中代表性不足的领域,如多语言OCR数据和数学图表等。该模型是InternVL 2.5系列的一部分,保留了与前代相同的“ViT-MLP-LLM”模型架构,并集成了新增量预训练的InternViT与各种预训练的LLMs,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。
多模态大型语言模型,支持图像与文本的交互理解。
InternVL2_5-8B是由OpenGVLab开发的一款多模态大型语言模型(MLLM),它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型采用'ViT-MLP-LLM'架构,集成了新增量预训练的InternViT与多种预训练语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP projector。InternVL 2.5系列模型在多模态任务上展现出卓越的性能,包括图像和视频理解、多语言理解等。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
© 2024 AIbase 备案号:闽ICP备08105208号-14