需求人群:
"该产品适合需要开发多语言自动语音识别系统的开发者、研究人员和企业,尤其适用于需要高效、灵活且高性能的语音识别解决方案的场景,例如智能语音助手、多语言客服系统、语音转文字应用等。"
使用场景示例:
开发一个支持多种语言的智能语音助手,能够实时将语音转换为文本。
为多语言客服系统提供高效的语音识别能力,快速响应不同语言的客户咨询。
在多语言会议中实时转录语音内容,支持多种语言的语音输入。
产品特色:
支持多语言 ASR 模型开发,覆盖中文、英语、俄语、越南语、日语、泰语、印尼语和阿拉伯语。
采用灵活的参数配置设计,解耦配置与功能代码,支持多种语言任务。
集成语言 ID 到 RNN-Transducer 架构,提升多语言 ASR 性能。
提供完整的 ASR 流程支持,包括数据处理、模型训练、推理、微调和部署。
支持流式 ASR 模型,推理速度比 Whisper-Large v3 快 7 倍,模型大小仅为 20%。
使用教程:
1. 安装依赖:根据官方文档安装必要的依赖项。
2. 数据准备:使用 `zipformer/prepare.py` 脚本将原始数据预处理为所需格式。
3. BPE 模型训练:使用 `zipformer/prepare_bpe.py` 脚本训练 BPE 模型,支持多语言文本。
4. 模型训练:配置训练参数后,运行 `zipformer/train.py` 脚本开始训练多语言 ASR 模型。
5. 模型微调:设置 `do_finetune` 参数为 `true`,使用特定数据集对模型进行微调。
6. 模型评估:使用 `zipformer/streaming_decode.py` 脚本对训练好的模型进行评估。
7. 模型导出:使用 `zipformer/export.py` 或 `zipformer/export-onnx-streaming.py` 脚本将模型导出为 PyTorch 或 ONNX 格式,用于部署。
浏览量:5
最新流量情况
月访问量
4.91m
平均访问时长
00:06:18
每次访问页数
5.57
跳出率
37.92%
流量来源
直接访问
51.73%
自然搜索
32.88%
邮件
0.04%
外链引荐
13.01%
社交媒体
2.27%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.81%
德国
3.69%
印度
9.16%
俄罗斯
4.47%
美国
18.04%
PengChengStarling 是一个基于 icefall 项目的多语言自动语音识别(ASR)模型开发工具包。
PengChengStarling 是一个专注于多语言自动语音识别(ASR)的开源工具包,基于 icefall 项目开发。它支持完整的 ASR 流程,包括数据处理、模型训练、推理、微调和部署。该工具包通过优化参数配置和集成语言 ID 到 RNN-Transducer 架构中,显著提升了多语言 ASR 系统的性能。其主要优点包括高效的多语言支持、灵活的配置设计以及强大的推理性能。PengChengStarling 的模型在多种语言上表现出色,且模型规模较小,推理速度极快,适合需要高效语音识别的场景。
这是一个基于Qwen2.5-32B模型的4位量化版本,专为高效推理和低资源部署设计。
该产品是一个基于Qwen2.5-32B的4位量化语言模型,通过GPTQ技术实现高效推理和低资源消耗。它在保持较高性能的同时,显著降低了模型的存储和计算需求,适合在资源受限的环境中使用。该模型主要面向需要高性能语言生成的应用场景,如智能客服、编程辅助、内容创作等。其开源许可和灵活的部署方式使其在商业和研究领域具有广泛的应用前景。
实时浏览器端语音识别应用
Moonshine Web是一个基于React和Vite构建的简单应用,它运行了Moonshine Base,这是一个针对快速准确自动语音识别(ASR)优化的强大语音识别模型,适用于资源受限的设备。该应用在浏览器端本地运行,使用Transformers.js和WebGPU加速(或WASM作为备选)。它的重要性在于能够为用户提供一个无需服务器即可在本地进行语音识别的解决方案,这对于需要快速处理语音数据的应用场景尤为重要。
YuE是一个开源的音乐生成模型,能够将歌词转化为完整的歌曲。
YuE是一个开创性的开源基础模型系列,专为音乐生成设计,能够将歌词转化为完整的歌曲。它能够生成包含吸引人的主唱和配套伴奏的完整歌曲,支持多种音乐风格。该模型基于深度学习技术,具有强大的生成能力和灵活性,能够为音乐创作者提供强大的工具支持。其开源特性也使得研究人员和开发者可以在此基础上进行进一步的研究和开发。
一款基于StyleTTS 2架构的先进AI文本转语音模型,拥有8200万参数,提供高质量的自然语音合成。
Kokoro TTS是一款专注于文本转语音的AI模型,其主要功能是将文本内容转换为自然流畅的语音输出。该模型基于StyleTTS 2架构,拥有8200万参数,能够在保持高质量语音合成的同时,提供高效的性能和较低的资源消耗。其多语言支持和可定制的语音包使其能够满足不同用户在多种场景下的需求,如制作有声读物、播客、培训视频等,尤其适合教育领域,帮助提升内容的可访问性和吸引力。此外,Kokoro TTS是开源的,用户可以免费使用,这使得它在成本效益上具有显著优势。
DeepSeek-R1-Distill-Llama-8B 是一个高性能的开源语言模型,适用于文本生成和推理任务。
DeepSeek-R1-Distill-Llama-8B 是 DeepSeek 团队开发的高性能语言模型,基于 Llama 架构并经过强化学习和蒸馏优化。该模型在推理、代码生成和多语言任务中表现出色,是开源社区中首个通过纯强化学习提升推理能力的模型。它支持商业使用,允许修改和衍生作品,适合学术研究和企业应用。
一个免费开源的简历生成器,简化简历创建、更新和分享过程。
Reactive Resume 是一个由 Amruth Pillai 开发的免费开源简历生成器,旨在帮助用户轻松创建、更新和分享简历。该项目已持续开发超过3年,具备丰富的功能和高度的灵活性。它采用 MIT 开源许可证,用户可以自由使用和修改代码,甚至可以通过 Docker 自行托管。其支持多种语言、多种简历模板和自定义功能,满足不同用户的需求。作为一款完全免费且无广告的产品,它以实用性和便捷性为主要优势,致力于帮助求职者在求职过程中脱颖而出。
开源的视觉语言模型,可在多种设备上运行。
Moondream AI是一个开源的视觉语言模型,具有强大的多模态处理能力。它支持多种量化格式,如fp16、int8、int4,能够在服务器、PC、移动设备等多种目标设备上进行GPU和CPU优化推理。其主要优点包括快速、高效、易于部署,且采用Apache 2.0许可证,允许用户自由使用和修改。Moondream AI的定位是为开发者提供一个灵活、高效的人工智能解决方案,适用于需要视觉和语言处理能力的各种应用场景。
自动语音识别工具,提供词级时间戳和说话人识别
BetterWhisperX是一个基于WhisperX改进的自动语音识别模型,它能够提供快速的语音转文字服务,并具备词级时间戳和说话人识别功能。这个工具对于需要处理大量音频数据的研究人员和开发者来说非常重要,因为它可以大幅提高语音数据处理的效率和准确性。产品背景基于OpenAI的Whisper模型,但做了进一步的优化和改进。目前,该项目是免费且开源的,定位于为开发者社区提供更高效、更准确的语音识别工具。
开源AI模型,具有7B参数和3.1T训练令牌
RWKV-6 Finch 7B World 3是一个开源的人工智能模型,拥有7B个参数,并且经过3.1万亿个多语言令牌的训练。该模型以其环保的设计理念和高性能而著称,旨在为全球用户提供高质量的开源AI模型,无论国籍、语言或经济状况如何。RWKV架构旨在减少对环境的影响,每令牌消耗的功率固定,与上下文长度无关。
Skywork o1 Open系列模型,提升复杂问题解决能力
Skywork-o1-Open-PRM-Qwen-2.5-1.5B是Skywork团队开发的一系列模型,这些模型结合了o1风格的慢思考和推理能力。该模型专门设计用于通过增量过程奖励增强推理能力,适合解决小规模的复杂问题。与简单的OpenAI o1模型复现不同,Skywork o1 Open系列模型不仅在输出中展现出固有的思考、规划和反思能力,而且在标准基准测试中的推理技能有显著提升。这一系列代表了AI能力的一次战略性进步,将原本较弱的基础模型推向了推理任务的最新技术(SOTA)。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
1T开源多语言大型语言模型
Tele-FLM-1T是一个开源的1T多语言大型语言模型,基于解码器仅Transformer架构,经过约2T tokens的训练。该模型在规模上展现出卓越的性能,有时甚至超越了更大的模型。除了分享模型权重外,还提供了核心设计、工程实践和训练细节,期待对学术和工业社区都有所裨益。
最前沿的开源AI模型,支持多语言和高级功能。
Llama 3.1是Meta AI推出的最新一代大型语言模型,具有128K的上下文长度扩展、支持八种语言,并首次开源了405B参数级别的前沿AI模型。该模型在通用知识、可控性、数学、工具使用和多语言翻译方面具有最先进的能力,能够与最好的闭源模型相媲美。Llama 3.1的发布,将为开发者提供解锁新工作流程的工具,例如合成数据生成和模型蒸馏。
开源的多语言代码生成模型
CodeGeeX4-ALL-9B是CodeGeeX4系列模型的最新开源版本,基于GLM-4-9B持续训练,显著提升了代码生成能力。它支持代码补全、生成、代码解释、网页搜索、函数调用、代码问答等功能,覆盖软件开发的多个场景。在公共基准测试如BigCodeBench和NaturalCodeBench上表现优异,是参数少于10亿的最强代码生成模型,实现了推理速度与模型性能的最佳平衡。
自然对话场景下的文字转语音模型
ChatTTS是一个为对话场景设计的声音生成模型,特别适用于大型语言模型助手的对话任务,以及对话式音频和视频介绍等应用。它支持中英文,通过使用约10万小时的中英文数据训练,展现出高质量和自然度的语音合成能力。
多语言AI模型,支持101种语言。
Aya是由Cohere For AI领导的全球性倡议,涉及119个国家的3000多名独立研究人员。Aya是一个尖端模型和数据集,通过开放科学推进101种语言的多语言AI。Aya模型能够理解并按照101种语言的指令执行任务,是迄今为止最大的开放科学机器学习项目之一,重新定义了研究领域,通过与全球独立研究人员合作,实现了完全开源的数据集和模型。
Falcon 2 是一款开源、多语言、多模态的模型,具备图像到文本转换能力。
Falcon 2 是一款具有创新功能的生成式 AI 模型,为我们创造了一种充满可能性的未来路径,只有想象力才是限制。Falcon 2 采用开源许可证,具备多语言和多模态的能力,其中独特的图像到文本转换功能标志着 AI 创新的重大进展。
建立世界领先的语音 AI 模型
探索 AssemblyAI 当前的研究、新闻和有关语音 AI 技术的更新。AssemblyAI 的 Universal-1 在多语言环境下实现了行业领先的性能,准确、强大且鲁棒,帮助全球客户和开发人员构建各种语音 AI 应用。Universal-1 在英语、西班牙语和德语语音转文本准确度方面均实现了 10% 或更高的改进,减少了关于语音数据和环境噪声的幻觉率,客户对 Universal-1 的输出更为偏好,具有代码转换能力等。
一键翻译各类图片内文字
该项目可以将漫画/图片中的文字进行翻译,主要功能包括文本检测、光学字符识别(OCR)、机器翻译和图像修补。它支持多种语言如日语、中文、英语和韩语等,可实现近乎完美的翻译效果。该项目主要面向漫画爱好者和图像处理工作者,可以方便地阅读外语漫画或进行图像的多语言处理。此外,它还提供Web服务、在线演示和命令行工具等多种使用方式,具有良好的可用性。该项目代码开源,欢迎大家一起完善和贡献。
下一代开源和双语大型语言模型
Yi-9B是01.AI研发的下一代开源双语大型语言模型系列之一。训练数据量达3T,展现出强大的语言理解、常识推理、阅读理解等能力。在代码、数学、常识推理和阅读理解等方面表现卓越,是同尺寸开源模型中的佼佼者。适用于个人、学术和商业用途。
Qwen1.5 - 开源的基础和聊天模型,支持多种规模,优化开发者体验。
Qwen1.5是Qwen系列的下一个版本,提供了基础和聊天模型的开源版本,覆盖了0.5B到72B的多个规模。支持多语言,长上下文,对齐人类偏好,并在基本能力、聊天性能、多语言理解等方面取得显著进展。
多语言模型问答助手
Snack AI是一款多语言模型问答助手,可以同时向多个语言模型提问并获取答案。它能够帮助用户快速获取准确的信息,并提供丰富的功能和使用场景。Snack AI的定价灵活多样,适合个人用户和企业用户的不同需求。
连接多个AI模型,轻松创建交互式网络
AI-Flow是一个开源、用户友好的UI应用程序,可创建具有不同AI模型的交互式网络。它可以方便地连接多个AI模型,以实现多角度响应各种提示的功能。AI-Flow支持通过编辑流程图的方式,设计定制化的AI网络。用户可以轻松地创建、保存和共享自己的AI网络,并通过改变初始输入来实验不同的输出结果。AI-Flow还支持从外部数据源获取内容,并可以用于生成内容或对生成的内容提供即时反馈。
这是一个完全开放的 DeepSeek-R1 模型的复现项目,旨在帮助开发者复现和构建基于 R1 的模型。
huggingface/open-r1 是一个开源项目,致力于复现 DeepSeek-R1 模型。该项目提供了一系列脚本和工具,用于训练、评估和生成合成数据,支持多种训练方法和硬件配置。其主要优点是完全开放,允许开发者自由使用和改进,对于希望在深度学习和自然语言处理领域进行研究和开发的用户来说,是一个非常有价值的资源。该项目目前没有明确的定价,适合学术研究和商业用途。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
首个面向语境智能的人类级实时交互系统,支持多情感、多风格语音交互。
SpeechGPT 2.0-preview 是一款由复旦大学自然语言处理实验室开发的先进语音交互模型。它通过海量语音数据训练,实现了低延迟、高自然度的语音交互能力。该模型能够模拟多种情感、风格和角色的语音表达,同时支持工具调用、在线搜索和外部知识库访问等功能。其主要优点包括强大的语音风格泛化能力、多角色模拟以及低延迟交互体验。目前该模型仅支持中文语音交互,未来计划扩展到更多语言。
© 2025 AIbase 备案号:闽ICP备08105208号-14