需求人群:
"Seed-ASR的目标受众主要是需要高精度语音识别服务的企业或个人,如语音转文字服务提供商、多语言内容制作者、以及需要在复杂环境下进行语音识别的应用开发者。该技术特别适合于需要处理多种语言和方言,以及在特定上下文环境中进行准确语音识别的场景。"
使用场景示例:
企业使用Seed-ASR进行会议录音的实时转写,提高会议记录的效率和准确性。
内容创作者利用Seed-ASR将视频或播客中的语音内容转换成文字,便于内容的多平台分发。
教育机构采用Seed-ASR进行课堂录音的转写,便于学生复习和教师评估。
产品特色:
上下文感知能力:能够根据对话历史、代理名称、代理描述信息等上下文信息提高识别准确性。
多领域适应性:在不同领域如商业、教育、娱乐等场景中均能提供准确的语音识别服务。
多语言支持:支持中文和英文等多种语言的语音识别。
多方言识别:能够识别包括吴语、粤语、四川话等多种中国方言。
错误自我修正:用户对字幕的修改可以作为识别提示,避免在后续视频中重复同样的错误。
背景噪声鲁棒性:即使在有背景噪声的情况下也能保持较高的识别准确率。
使用教程:
步骤1: 访问Seed-ASR的官方网站或下载相关APP。
步骤2: 注册并登录账户,根据需要选择合适的服务套餐。
步骤3: 上传需要识别的语音文件或直接进行实时语音识别。
步骤4: 设置识别参数,如选择语言、方言等。
步骤5: 开始识别过程,等待Seed-ASR处理语音数据。
步骤6: 检查识别结果,根据需要进行编辑和修正。
步骤7: 导出或使用识别后的文字数据,用于进一步的分析或记录。
浏览量:58
最新流量情况
月访问量
15.48k
平均访问时长
00:00:39
每次访问页数
1.36
跳出率
62.24%
流量来源
直接访问
55.90%
自然搜索
17.72%
邮件
0.06%
外链引荐
22.32%
社交媒体
3.63%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
73.93%
日本
3.81%
美国
11.10%
基于大型语言模型的语音识别技术。
Seed-ASR是由字节跳动公司开发的基于大型语言模型(Large Language Model, LLM)的语音识别模型。它通过将连续的语音表示和上下文信息输入到LLM中,利用LLM的能力,在大规模训练和上下文感知能力的引导下,显著提高了在包括多个领域、口音/方言和语言的综合评估集上的表现。与最近发布的大型ASR模型相比,Seed-ASR在中英文公共测试集上实现了10%-40%的词错误率降低,进一步证明了其强大的性能。
123B参数的大型语言模型,具备先进推理和编码能力。
Mistral-Large-Instruct-2411是由Mistral AI提供的一款具有123B参数的大型语言模型,它在推理、知识、编码等方面具有最先进的能力。该模型支持多种语言,并在80多种编程语言上进行了训练,包括但不限于Python、Java、C、C++等。它以代理为中心,具备原生函数调用和JSON输出能力,是进行科研和开发的理想选择。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
下一代语音AI,打造自然沟通的AI语音代理。
Ultravox.ai是一个先进的语音语言模型(SLM),直接处理语音,无需转换为文本,实现更自然、流畅的对话。它支持多语言,易于适应新语言或口音,确保与不同受众的顺畅沟通。产品背景信息显示,Ultravox.ai是一个开源模型,用户可以根据自己的需求进行定制和部署,价格为每分钟5美分。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
高效能的语言模型,支持本地智能和设备端计算。
Ministral-8B-Instruct-2410是由Mistral AI团队开发的一款大型语言模型,专为本地智能、设备端计算和边缘使用场景设计。该模型在类似的大小模型中表现优异,支持128k上下文窗口和交错滑动窗口注意力机制,能够在多语言和代码数据上进行训练,支持函数调用,词汇量达到131k。Ministral-8B-Instruct-2410模型在各种基准测试中表现出色,包括知识与常识、代码与数学以及多语言支持等方面。该模型在聊天/竞技场(gpt-4o判断)中的性能尤为突出,能够处理复杂的对话和任务。
功能强大的语音离线文件转写服务
FunASR是一款语音离线文件转写服务软件包,集成了语音端点检测、语音识别、标点等模型,能够将长音频与视频转换成带标点的文字,并支持多路请求同时转写。它支持ITN与用户自定义热词,服务端集成有ffmpeg,支持多种音视频格式输入,并提供多种编程语言客户端,适用于需要高效、准确语音转写服务的企业和开发者。
世界最精确的AI语音转录服务
Rev AI提供高精度的语音转录服务,支持58种以上语言,能够将视频和语音应用中的语音转换为文本。它通过使用世界上最多样化的声音集合进行训练,为视频和语音应用设定了准确性标准。Rev AI还提供实时流媒体转录、人类转录、语言识别、情感分析、主题提取、总结和翻译等服务。Rev AI的技术优势在于低词错误率、对性别和种族口音的最小偏见、支持更多语言以及提供最易读的转录文本。此外,它还符合世界顶级的安全标准,包括SOC II、HIPAA、GDPR和PCI合规性。
35亿参数的高性能生成模型
C4AI Command R 08-2024是由Cohere和Cohere For AI开发的35亿参数大型语言模型,专为推理、总结和问答等多种用例优化。该模型支持23种语言的训练,并在10种语言中进行了评估,具有高性能的RAG(检索增强生成)能力。它通过监督式微调和偏好训练,以符合人类对有用性和安全性的偏好。此外,该模型还具备对话工具使用能力,能够通过特定的提示模板生成基于工具的响应。
语音助手插件,提升GPT交互体验
Voice Assistant Plugin for GPT 是一款专为GPT设计的语音助手插件,旨在通过语音交互提升用户体验。该插件结合了先进的语音识别技术,允许用户通过语音命令与GPT进行交流,实现更加自然和便捷的对话体验。产品背景信息显示,该插件由Air Tech Studio开发,支持多语言,并且注重用户数据安全,不与第三方分享任何数据。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
70亿参数的大型多语言对话生成模型
Meta Llama 3.1是Meta公司推出的一种大型语言模型,拥有70亿参数,支持8种语言的文本生成和对话。该模型使用优化的Transformer架构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。它旨在为商业和研究用途提供支持,特别是在多语言对话场景下表现出色。
大型语言模型,支持多语言和代码数据
Mistral-Nemo-Instruct-2407是由Mistral AI和NVIDIA联合训练的大型语言模型(LLM),是Mistral-Nemo-Base-2407的指导微调版本。该模型在多语言和代码数据上进行了训练,显著优于大小相似或更小的现有模型。其主要特点包括:支持多语言和代码数据训练、128k上下文窗口、可替代Mistral 7B。模型架构包括40层、5120维、128头维、1436隐藏维、32个头、8个kv头(GQA)、2^17词汇量(约128k)、旋转嵌入(theta=1M)。该模型在多种基准测试中表现出色,如HellaSwag(0-shot)、Winogrande(0-shot)、OpenBookQA(0-shot)等。
12B参数的大型语言模型
Mistral-Nemo-Base-2407是由Mistral AI和NVIDIA联合训练的12B参数大型预训练生成文本模型。该模型在多语言和代码数据上进行了训练,显著优于相同或更小规模的现有模型。其主要特点包括:Apache 2.0许可证发布,支持预训练和指令版本,128k上下文窗口训练,支持多种语言和代码数据,是Mistral 7B的替代品。模型架构包括40层、5120维、128头维、14364隐藏维、32头数、8个kv头(GQA)、词汇量约128k、旋转嵌入(theta=1M)。该模型在多个基准测试中表现出色,如HellaSwag、Winogrande、OpenBookQA等。
多语种高精度语音识别模型
SenseVoiceSmall是一款具备多种语音理解能力的语音基础模型,包括自动语音识别(ASR)、口语语言识别(LID)、语音情感识别(SER)和音频事件检测(AED)。该模型经过超过40万小时的数据训练,支持超过50种语言,识别性能超越Whisper模型。其小型模型SenseVoice-Small采用非自回归端到端框架,推理延迟极低,处理10秒音频仅需70毫秒,比Whisper-Large快15倍。此外,SenseVoice还提供便捷的微调脚本和策略,支持多并发请求的服务部署管道,客户端语言包括Python、C++、HTML、Java和C#等。
让应用通过语音与文本的转换实现智能交互。
Azure 认知服务语音是微软推出的一款语音识别与合成服务,支持超过100种语言和方言的语音转文本和文本转语音功能。它通过创建可处理特定术语、背景噪音和重音的自定义语音模型,提高听录的准确度。此外,该服务还支持实时语音转文本、语音翻译、文本转语音等功能,适用于多种商业场景,如字幕生成、通话后听录分析、视频翻译等。
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
大型语言模型,支持多语言和编程语言文本生成。
Nemotron-4-340B-Base是由NVIDIA开发的大型语言模型,拥有3400亿参数,支持4096个token的上下文长度,适用于生成合成数据,帮助研究人员和开发者构建自己的大型语言模型。模型经过9万亿token的预训练,涵盖50多种自然语言和40多种编程语言。NVIDIA开放模型许可允许商业使用和派生模型的创建与分发,不声明对使用模型或派生模型生成的任何输出拥有所有权。
AI实时对话,超低延迟
WhisperFusion是一款基于WhisperLive和WhisperSpeech功能的产品,通过在实时语音转文字流程中集成Mistral大型语言模型(LLM)来实现与AI的无缝对话。Whisper和LLM均经过TensorRT引擎优化,以最大程度提升性能和实时处理能力。WhisperSpeech则使用torch.compile来优化。产品定位于提供超低延迟的AI实时对话体验。
联合语音转录和实体识别的先进模型
Whisper-NER是一个创新的模型,它允许同时进行语音转录和实体识别。该模型支持开放类型的命名实体识别(NER),能够识别多样化和不断演变的实体。Whisper-NER旨在作为自动语音识别(ASR)和NER下游任务的强大基础模型,并且可以在特定数据集上进行微调以提高性能。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
AI视频翻译、配音和唇形同步工具
Vozo Video Translator是一款利用人工智能技术提供视频翻译、配音和唇形同步服务的产品。它通过精确的AI翻译技术,结合背景知识,提供定制化、符合语境的翻译,适应用户的风格和语调偏好,确保翻译结果自然流畅。Vozo Video Translator的主要优点包括准确的语境翻译、AI驱动的校对和润色、真实的语音克隆和情感保留、以及多语种的唇形同步技术。产品背景信息显示,Vozo Video Translator支持多种语言的翻译,适用于全球市场,价格方面,新用户可以获得30积分的免费试用,之后可以根据需要升级计划。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
© 2024 AIbase 备案号:闽ICP备08105208号-14