需求人群:
"目标受众主要是研究人员和开发者,特别是那些在图像和视频处理、多模态学习、自然语言处理领域寻求创新解决方案的专业人士。LongVA模型适合他们因为它提供了一种强大的工具来探索和实现复杂的视觉和语言任务。"
使用场景示例:
研究人员使用LongVA模型进行视频内容的自动描述生成。
开发者利用LongVA进行图像和视频的多模态聊天应用开发。
教育机构采用LongVA模型进行视觉和语言教学的辅助工具开发。
产品特色:
处理长视频和大量视觉标记,实现语言到视觉的零样本转换。
在视频多模态评估(Video-MME)中取得优异表现。
支持CLI(命令行界面)和基于gradio UI的多模态聊天演示。
提供Hugging Face平台的快速启动代码示例。
支持自定义生成参数,如采样、温度、top_p等。
提供V-NIAH和LMMs-Eval的评估脚本,用于模型性能测试。
支持长文本训练,可在多GPU环境下进行高效训练。
使用教程:
1. 安装必要的依赖项,包括CUDA 11.8和PyTorch 2.1.2。
2. 通过pip安装LongVA模型及其依赖。
3. 下载并加载预训练的LongVA模型。
4. 准备输入数据,可以是图像或视频文件。
5. 使用CLI或gradio UI进行模型的交互和测试。
6. 根据需要调整生成参数,以获得最佳结果。
7. 运行评估脚本,测试模型在不同任务上的性能。
浏览量:47
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
从语言到视觉的长上下文转换模型
LongVA是一个能够处理超过2000帧或超过200K视觉标记的长上下文转换模型。它在Video-MME中的表现在7B模型中处于领先地位。该模型基于CUDA 11.8和A100-SXM-80G进行了测试,并且可以通过Hugging Face平台进行快速启动和使用。
全球最长上下文窗口大模型
Baichuan2-192K推出全球最长上下文窗口大模型Baichuan2-192K,一次可输入35万字超越Claude2。Baichuan2-192K不仅在上下文窗口长度上超越Claude2,在长窗口文本生成质量、长上下文理解以及长文本问答、摘要等方面的表现也全面领先Claude2。Baichuan2-192K通过算法和工程的极致优化,实现了窗口长度和模型性能之间的平衡,做到了窗口长度和模型性能的同步提升。Baichuan2-192K已经开放了API接口,提供给企业用户,并已经在法律、媒体、金融等行业落地应用。
高效无限上下文语言模型的官方实现
Samba是一个简单而强大的混合模型,具有无限的上下文长度。它的架构非常简单:Samba = Mamba + MLP + 滑动窗口注意力 + 层级MLP堆叠。Samba-3.8B模型在Phi3数据集上训练了3.2万亿个token,主要基准测试(例如MMLU、GSM8K和HumanEval)上的表现大大超过了Phi3-mini。Samba还可以通过最少的指令调整实现完美的长上下文检索能力,同时保持与序列长度的线性复杂度。这使得Samba-3.8B-instruct在下游任务(如长上下文摘要)上表现出色。
超长上下文模型,革新软件开发
Magic团队开发的超长上下文模型(LTM)能够处理高达100M tokens的上下文信息,这在AI领域是一个重大突破。该技术主要针对软件开发领域,通过在推理过程中提供大量代码、文档和库的上下文,极大地提升了代码合成的质量和效率。与传统的循环神经网络和状态空间模型相比,LTM模型在存储和检索大量信息方面具有明显优势,能够构建更复杂的逻辑电路。此外,Magic团队还与Google Cloud合作,利用NVIDIA GB200 NVL72构建下一代AI超级计算机,进一步推动模型的推理和训练效率。
扩展LLM上下文窗口
LLM Context Extender是一款旨在扩展大型语言模型(LLMs)上下文窗口的工具。它通过调整RoPE的基础频率和缩放注意力logits的方式,帮助LLMs有效适应更大的上下文窗口。该工具在精细调整性能和稳健性方面验证了其方法的优越性,并展示了在仅有100个样本和6个训练步骤的情况下,将LLaMA-2-7B-Chat的上下文窗口扩展到16,384的非凡效率。此外,还探讨了数据组成和训练课程如何影响特定下游任务的上下文窗口扩展,建议以长对话进行LLMs的精细调整作为良好的起点。
视觉定位GUI指令的多模态模型
Aria-UI是一个专为GUI指令视觉定位而设计的大规模多模态模型。它采用纯视觉方法,不依赖辅助输入,能够适应多样化的规划指令,并通过合成多样化、高质量的指令样本来适应不同的任务。Aria-UI在离线和在线代理基准测试中均创下新的最高记录,超越了仅依赖视觉和依赖AXTree的基线。
EgoLife是一个长期、多模态、多视角的日常生活AI助手项目,旨在推进长期上下文理解研究。
EgoLife是一个面向长期、多模态、多视角日常生活的AI助手项目。该项目通过记录六名志愿者一周的共享生活体验,生成了约50小时的视频数据,涵盖日常活动、社交互动等场景。其多模态数据(包括视频、视线、IMU数据)和多视角摄像头系统为AI研究提供了丰富的上下文信息。此外,该项目提出了EgoRAG框架,用于解决长期上下文理解任务,推动了AI在复杂环境中的应用能力。
高性能多模态AI模型
Gemini Pro是DeepMind推出的一款高性能多模态AI模型,专为广泛的任务设计,具有高达两百万token的长上下文窗口,能够处理大规模文档、代码、音频和视频等。它在多个基准测试中表现出色,包括代码生成、数学问题解决和多语言翻译等。
权限感知上下文提供者
ReLLM提供权限感知上下文,可用于大型语言模型(如ChatGPT)的应用中。通过将用户的长期记忆提供给ChatGPT,实现更自然的对话体验。ReLLM还处理与ChatGPT的通信和消息链管理,保证数据安全性。只提供用户可以访问的数据。数据加密存储,解密只在使用时进行。定价详见官方网站。
强大的语言模型,拥有4560亿总参数,可处理长达400万token的上下文。
MiniMax-01是一个具有4560亿总参数的强大语言模型,其中每个token激活459亿参数。它采用混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE),通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、varlen环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万tokens,在推理时可处理长达400万tokens的上下文。在多个学术基准测试中,MiniMax-01展现了顶级模型的性能。
将LLM上下文窗口扩展至200万令牌的技术
LongRoPE是微软推出的技术,可以将预训练大型语言模型(LLM)的上下文窗口扩展到2048k(200万)令牌,实现从短上下文到长上下文的扩展,降低训练成本和时间,同时保持原有短上下文窗口性能。适用于提高语言模型在长文本上的理解和生成能力,提升机器阅读理解、文本摘要和长篇文章生成等任务。
超级上下文定向引擎!
Neuwo是一款领先的上下文人工智能引擎,用于内容分类和品牌安全。我们的技术帮助出版商和数字资产管理者改善用户体验并提供不打扰的广告。Neuwo通过丰富您的宝贵数据,提供元标签、相关内容和IAB分类,实现上下文广告的最大化利用。我们的使命是使您的数据更有价值!
在本地运行GPT-4和基础模型,无需上传屏幕上下文。
AmbientGPT是一个革命性的编程辅助工具,它允许开发者在本地运行GPT-4和基础模型,同时能够直接推断屏幕上下文,从而无需手动上传上下文信息。这大大提高了代码编写和问题解决的效率。产品目前处于测试阶段,适用于拥有ARM64架构MacBook的开发者,并且需要一个兼容的OpenAI API密钥。
EasyContext演示了如何利用现有技术组合,来训练700K和1M上下文的语言模型。
EasyContext是一个开源项目,旨在通过结合多种技术手段,实现使用普通硬件训练语言模型的上下文长度达到100万词元。主要采用的技术包括序列并行、Deepspeed zero3离载、Flash注意力以及激活checkpoint等。该项目不提出新的创新点,而是展示如何组合现有的技术手段来实现这一目标。已成功训练出Llama-2-7B和Llama-2-13B两个模型,分别在8块A100和16块A100上实现了700K和1M词元的上下文长度。
评估大型语言模型的逻辑推理和上下文理解能力。
Turtle Benchmark是一款基于'Turtle Soup'游戏的新型、无法作弊的基准测试,专注于评估大型语言模型(LLMs)的逻辑推理和上下文理解能力。它通过消除对背景知识的需求,提供了客观和无偏见的测试结果,具有可量化的结果,并且通过使用真实用户生成的问题,使得模型无法被'游戏化'。
MiniMax-Text-01是一个强大的语言模型,具有4560亿总参数,能够处理长达400万token的上下文。
MiniMax-Text-01是一个由MiniMaxAI开发的大型语言模型,拥有4560亿总参数,其中每个token激活459亿参数。它采用了混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE)技术,通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、变长环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万token,并能在推理时处理长达400万token的上下文。在多个学术基准测试中,MiniMax-Text-01展现出了顶级模型的性能。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
实时零唇语音转换的流式上下文感知语言建模
StreamVoice是一种基于语言模型的零唇语音转换模型,可实现实时转换,无需完整的源语音。它采用全因果上下文感知语言模型,结合时间独立的声学预测器,能够在每个时间步骤交替处理语义和声学特征,从而消除对完整源语音的依赖。为了增强在流式处理中可能出现的上下文不完整而导致的性能下降,StreamVoice通过两种策略增强了语言模型的上下文感知性:1)教师引导的上下文预见,在训练过程中利用教师模型总结当前和未来的语义上下文,引导模型对缺失上下文进行预测;2)语义屏蔽策略,促进从先前受损的语义和声学输入进行声学预测,增强上下文学习能力。值得注意的是,StreamVoice是第一个基于语言模型的流式零唇语音转换模型,无需任何未来预测。实验结果表明,StreamVoice具有流式转换能力,同时保持与非流式语音转换系统相媲美的零唇性能。
MCP Defender是一款AI防火墙,旨在监控和保护模型上下文协议(MCP)通信。
MCP Defender是一款AI防火墙,用于监控和保护MCP通信。它拦截工具调用和响应,并根据安全签名验证它们。MCP Defender提供高级的LLM驱动的恶意活动检测,并允许用户管理扫描过程中使用的签名。
使用自然语言指令编辑图片,保持上下文和身份一致。
FLUX.1 Kontext是一款AI图像编辑工具,通过自然语言指令实现编辑,保持上下文和身份一致。其主要优点包括快速编辑、保持人物特征和身份一致、支持多种编辑模式,适用于各种创意需求。
一款多功能大型视觉语言模型
InternLM-XComposer-2.5是一款支持长上下文输入和输出的多功能大型视觉语言模型。它在各种文本图像理解和创作应用中表现出色,实现了与GPT-4V相当的水平,但仅使用了7B的LLM后端。该模型通过24K交错图像文本上下文进行训练,能够无缝扩展到96K长上下文,通过RoPE外推。这种长上下文能力使其在需要广泛输入和输出上下文的任务中表现突出。此外,它还支持超高分辨率理解、细粒度视频理解、多轮多图像对话、网页制作以及撰写高质量图文文章等功能。
智能对话应用,上下文理解、代码展示、多端同步
小秋 AI 是优秀的智能对话应用,支持上下文理解、代码块展示、代码块一键复制,兼容适配移动端与 PC 端,会话数据可进行多端同步。同时支持切换不同的 AI 应用并创建属于自己的 AI 应用,希望它能够成为您的得力助手,让每个人能尽情享受人工智能的魅力。
掌握开放世界交互的视觉-时间上下文提示模型
ROCKET-1是一个视觉-语言模型(VLMs),专门针对开放世界环境中的具身决策制定而设计。该模型通过视觉-时间上下文提示协议,将VLMs与策略模型之间的通信连接起来,利用来自过去和当前观察的对象分割来指导策略-环境交互。ROCKET-1通过这种方式,能够解锁VLMs的视觉-语言推理能力,使其能够解决复杂的创造性任务,尤其是在空间理解方面。ROCKET-1在Minecraft中的实验表明,该方法使代理能够完成以前无法实现的任务,突出了视觉-时间上下文提示在具身决策制定中的有效性。
70亿参数的超长上下文对话模型
InternLM2.5-7B-Chat-1M 是一个开源的70亿参数的对话模型,具有卓越的推理能力,在数学推理方面超越了同量级模型。该模型支持1M超长上下文窗口,能够处理长文本任务,如LongBench等。此外,它还具备强大的工具调用能力,能够从上百个网页搜集信息进行分析推理。
一种提升场景级视频生成能力的技术。
长上下文调优(LCT)旨在解决当前单次生成能力与现实叙事视频制作之间的差距。该技术通过数据驱动的方法直接学习场景级一致性,支持交互式多镜头开发和合成生成,适用于视频制作的各个方面。
加速长上下文大型语言模型的推理过程
MInference是一个针对长上下文大型语言模型(LLMs)的推理加速框架。它利用了LLMs注意力机制中的动态稀疏特性,通过静态模式识别和在线稀疏索引近似计算,显著提升了预填充(pre-filling)的速度,实现了在单个A100 GPU上处理1M上下文的10倍加速,同时保持了推理的准确性。
将您的代码上下文直接提供给AI助手,优化AI编码工作流程。
EchoComet是一个AI开发者工具,通过将代码上下文直接提供给AI助手,极大地简化了AI编码工作流程。它的主要优点在于能够轻松收集代码,并将其输入到AI助手中,提高AI处理代码的准确性和效率。
体验革命性的FLUX Kontext AI图像生成和编辑,利用具有上下文感知的技术创建、修改和增强图像。
Kontext AI的FLUX Kontext是一项具有上下文感知能力的技术,可用于图像生成和编辑。其主要优点包括快速、准确的生成和编辑图像,支持复杂的编辑工作流程,结合了传统文本到图像模型和流式生成建模。
© 2025 AIbase 备案号:闽ICP备08105208号-14