需求人群:
"目标受众为开发者、数据科学家和企业,他们需要处理大量的语音数据和实体识别任务。WhisperNER因其零样本能力和高准确性,特别适合于需要快速部署语音识别和实体识别解决方案的场景,尤其是在资源有限或需要处理多种语言的情况下。"
使用场景示例:
案例一:跨国公司使用WhisperNER处理多语言会议记录,实现自动化的语音转文字和关键信息提取。
案例二:研究机构利用WhisperNER进行语音数据的预处理,为后续的机器学习模型训练提供准确的输入。
案例三:开发者将WhisperNER集成到移动应用中,为用户提供实时语音识别和实体推荐功能。
产品特色:
- 零样本能力:无需训练即可识别多种语言和实体。
- 统一模型:结合ASR和NER,提高处理效率。
- 微调能力:可以在特定数据集上进行微调,以获得更好的性能。
- 多语言支持:适用于多种语言的语音和实体识别。
- 高准确性:基于先进的深度学习技术,提供高精度的识别结果。
- 易于集成:提供代码示例和API,方便开发者集成到自己的项目中。
- 开源:代码开源,社区可以共同参与模型的改进和优化。
使用教程:
1. 创建虚拟环境并激活:使用conda或pip安装所需环境和依赖。
2. 克隆代码库:通过git clone命令将WhisperNER的代码克隆到本地。
3. 安装依赖:根据项目提供的requirements.txt文件,使用pip安装所有依赖。
4. 加载模型和处理器:使用transformers库中的WhisperProcessor和WhisperForConditionalGeneration加载预训练模型。
5. 音频预处理:使用项目提供的audio_preprocess函数对音频文件进行预处理。
6. 运行模型:将预处理后的音频输入到模型中,生成token ids。
7. 后处理:将生成的token ids转换为文本,并去除prompt部分,得到最终的语音识别和实体识别结果。
浏览量:14
最新流量情况
月访问量
4.91m
平均访问时长
00:06:18
每次访问页数
5.57
跳出率
37.92%
流量来源
直接访问
51.73%
自然搜索
32.88%
邮件
0.04%
外链引荐
13.01%
社交媒体
2.27%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.81%
德国
3.69%
印度
9.16%
俄罗斯
4.47%
美国
18.04%
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
自动语音识别工具,提供词级时间戳和说话人识别
BetterWhisperX是一个基于WhisperX改进的自动语音识别模型,它能够提供快速的语音转文字服务,并具备词级时间戳和说话人识别功能。这个工具对于需要处理大量音频数据的研究人员和开发者来说非常重要,因为它可以大幅提高语音数据处理的效率和准确性。产品背景基于OpenAI的Whisper模型,但做了进一步的优化和改进。目前,该项目是免费且开源的,定位于为开发者社区提供更高效、更准确的语音识别工具。
微软开源的视频分词器家族
VidTok是微软开源的一系列先进的视频分词器,它在连续和离散分词方面表现出色。VidTok在架构效率、量化技术和训练策略上都有显著的创新,提供了高效的视频处理能力,并且在多个视频质量评估指标上超越了以往的模型。VidTok的开发旨在推动视频处理和压缩技术的发展,对于视频内容的高效传输和存储具有重要意义。
一款具有671B参数的Mixture-of-Experts语言模型。
DeepSeek-V3是一个强大的Mixture-of-Experts (MoE) 语言模型,拥有671B的总参数量,每次激活37B参数。它采用了Multi-head Latent Attention (MLA) 和 DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分的验证。此外,DeepSeek-V3首次采用了无辅助损失的负载均衡策略,并设置了多令牌预测训练目标,以实现更强大的性能。DeepSeek-V3在14.8万亿高质量令牌上进行了预训练,随后进行了监督式微调和强化学习阶段,以充分利用其能力。综合评估显示,DeepSeek-V3超越了其他开源模型,并达到了与领先的闭源模型相当的性能。尽管性能出色,DeepSeek-V3的完整训练仅需要2.788M H800 GPU小时,并且训练过程非常稳定。
实时浏览器端语音识别应用
Moonshine Web是一个基于React和Vite构建的简单应用,它运行了Moonshine Base,这是一个针对快速准确自动语音识别(ASR)优化的强大语音识别模型,适用于资源受限的设备。该应用在浏览器端本地运行,使用Transformers.js和WebGPU加速(或WASM作为备选)。它的重要性在于能够为用户提供一个无需服务器即可在本地进行语音识别的解决方案,这对于需要快速处理语音数据的应用场景尤为重要。
高效率的高分辨率图像合成框架
Sana是一个文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。它以极快的速度合成高分辨率、高质量的图像,并保持强大的文本-图像对齐,可以部署在笔记本电脑GPU上。Sana的核心设计包括深度压缩自编码器、线性扩散变换器(DiT)、仅解码器的小型语言模型作为文本编码器,以及高效的训练和采样策略。Sana-0.6B与现代大型扩散模型相比,体积小20倍,测量吞吐量快100倍以上。此外,Sana-0.6B可以部署在16GB笔记本电脑GPU上,生成1024×1024分辨率图像的时间少于1秒。Sana使得低成本的内容创作成为可能。
联合语音转录和实体识别的先进模型
Whisper-NER是一个创新的模型,它允许同时进行语音转录和实体识别。该模型支持开放类型的命名实体识别(NER),能够识别多样化和不断演变的实体。Whisper-NER旨在作为自动语音识别(ASR)和NER下游任务的强大基础模型,并且可以在特定数据集上进行微调以提高性能。
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
基于Gradio的实时人像动画Web界面
AdvancedLivePortrait-WebUI是一个基于Gradio框架开发的Web界面,用于实时人像动画编辑。该技术允许用户通过上传图片来编辑人物的面部表情,实现了高效的肖像动画制作。它基于LivePortrait算法,利用深度学习技术进行面部特征的捕捉和动画制作,具有操作简便、效果逼真的优点。产品背景信息显示,它是由jhj0517开发的开源项目,适用于需要进行人像动画制作的专业人士和爱好者。目前该项目是免费的,并且开源,用户可以自由使用和修改。
语音合成工具,提供高质量的语音生成服务
Fish Speech是一款专注于语音合成的产品,它通过使用先进的深度学习技术,能够将文本转换为自然流畅的语音。该产品支持多种语言,包括中文、英文等,适用于需要文本到语音转换的场景,如语音助手、有声读物制作等。Fish Speech以其高质量的语音输出、易用性和灵活性为主要优点,背景信息显示,该产品不断更新,增加了数据集大小,并改进了量化器的参数,以提供更好的服务。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
一款文本转语音工具,帮助您轻松阅读文本。
Praises是一款文本转语音(TTS)工具,它通过将文本转换为语音输出,帮助用户更轻松地获取信息。这款工具支持多种API,包括Azure API、Edge API等,并且支持多语言,使得它能够服务于全球用户。Praises的主要优点包括支持多种语音合成技术、易于集成和使用,以及开源的特性,使得开发者可以自由地修改和优化。Praises的背景信息显示,它是由个人开发者ElmTran开发的,并且遵循MIT开源协议,这意味着用户可以免费使用和修改该软件。
高效自动语音识别模型
Whisper large-v3-turbo是OpenAI提出的一种先进的自动语音识别(ASR)和语音翻译模型。它在超过500万小时的标记数据上进行训练,能够在零样本设置中泛化到许多数据集和领域。该模型是Whisper large-v3的微调版本,解码层从32减少到4,以提高速度,但可能会略微降低质量。
AI即时推理解决方案,速度领先世界。
Cerebras Inference是Cerebras公司推出的AI推理平台,提供20倍于GPU的速度和1/5的成本。它利用Cerebras的高性能计算技术,为大规模语言模型、高性能计算等提供快速、高效的推理服务。该平台支持多种AI模型,包括医疗、能源、政府和金融服务等行业应用,具有开放源代码的特性,允许用户训练自己的基础模型或微调开源模型。
新一代大模型架构,超越 Transformer。
RWKV 是一种革新的深度学习架构,结合了 RNN 和 Transformer 的最佳特性。它提供出色的性能,快速的推理和训练,并且不依赖自注意力机制,节省 VRAM,支持 ' 无限 ' 的上下文长度。RWKV 在多个语言和编码中表现出色,成为全球开发者的热门选择,推动了开源大语言模型的进步。
开源实现分布式低通信AI模型训练
OpenDiLoCo是一个开源框架,用于实现和扩展DeepMind的分布式低通信(DiLoCo)方法,支持全球分布式AI模型训练。它通过提供可扩展的、去中心化的框架,使得在资源分散的地区也能高效地进行AI模型的训练,这对于推动AI技术的普及和创新具有重要意义。
领先的文本到语音转换模型
Fish Speech V1.2是一款基于300,000小时的英语、中文和日语音频数据训练而成的文本到语音(TTS)模型。该模型代表了语音合成技术的最新进展,能够提供高质量的语音输出,适用于多种语言环境。
下一代开源AI模型,性能卓越。
Gemma 2是谷歌DeepMind推出的下一代开源AI模型,提供9亿和27亿参数版本,具有卓越的性能和推理效率,支持在不同硬件上以全精度高效运行,大幅降低部署成本。Gemma 2在27亿参数版本中,提供了两倍于其大小模型的竞争力,并且可以在单个NVIDIA H100 Tensor Core GPU或TPU主机上实现,显著降低部署成本。
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
开源代码语言模型,提升编程和数学推理能力。
DeepSeek-Coder-V2是一个开源的专家混合模型(Mixture-of-Experts, MoE),专为代码语言设计,其性能与GPT4-Turbo相当。它在代码特定任务上表现优异,同时在通用语言任务上保持了相当的性能。与DeepSeek-Coder-33B相比,V2版本在代码相关任务和推理能力上都有显著提升。此外,它支持的编程语言从86种扩展到了338种,上下文长度也从16K扩展到了128K。
开源字幕生成工具,实现内容无缝翻译。
subtitle是一个开源的字幕生成工具,利用先进的机器学习技术,为用户提供准确且自然的声音字幕。它支持多种语言,易于集成到现有的工作流程中,并允许用户在自己的服务器上自托管,增强控制权和隐私保护。
Qwen1.5系列首个千亿参数开源模型,多语言支持,高效Transformer解码器架构。
Qwen1.5-110B是Qwen1.5系列中规模最大的模型,拥有1100亿参数,支持多语言,采用高效的Transformer解码器架构,并包含分组查询注意力(GQA),在模型推理时更加高效。它在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。该模型的发布展示了在模型规模扩展方面的巨大潜力,并且预示着未来通过扩展数据和模型规模,可以获得更大的性能提升。
OOTDiffusion是一个高度可控的虚拟服装试穿开源工具
OOTDiffusion是一个基于潜在扩散模型的虚拟服装试穿开源工具。它支持半身和全身两种模型,可以实现服装的自然融合。用户可以通过调节各种参数实现对试穿效果的精确控制,满足不同的需求。该工具开源在GitHub上,已获得超过300星的关注。
© 2024 AIbase 备案号:闽ICP备08105208号-14