浏览量:439
最新流量情况
月访问量
237
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
39.59%
流量来源
直接访问
38.96%
自然搜索
40.78%
邮件
0.18%
外链引荐
13.91%
社交媒体
3.77%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
印度
100.00%
通过内在适应掌握视频外延画技术的高质量灵活方法
MOTIA是一个基于测试时适应的扩散方法,利用源视频内的内在内容和运动模式来有效进行视频外延画。该方法包括内在适应和外在渲染两个主要阶段,旨在提升视频外延画的质量和灵活性。
高分辨率视频外延与内容生成技术
Follow-Your-Canvas 是一种基于扩散模型的视频外延技术,它能够生成高分辨率的视频内容。该技术通过分布式处理和空间窗口合并,解决了GPU内存限制问题,同时保持了视频的空间和时间一致性。它在大规模视频外延方面表现出色,能够将视频分辨率显著提升,如从512 X 512扩展到1152 X 2048,同时生成高质量和视觉上令人愉悦的结果。
使用扩散模型进行图像外延
Diffusers Image Outpaint 是一个基于扩散模型的图像外延技术,它能够根据已有的图像内容,生成图像的额外部分。这项技术在图像编辑、游戏开发、虚拟现实等领域具有广泛的应用前景。它通过先进的机器学习算法,使得图像生成更加自然和逼真,为用户提供了一种创新的图像处理方式。
实时视频到视频翻译的扩散模型
StreamV2V是一个扩散模型,它通过用户提示实现了实时的视频到视频(V2V)翻译。与传统的批处理方法不同,StreamV2V采用流式处理方式,能够处理无限帧的视频。它的核心是维护一个特征库,该库存储了过去帧的信息。对于新进来的帧,StreamV2V通过扩展自注意力和直接特征融合技术,将相似的过去特征直接融合到输出中。特征库通过合并存储的和新的特征不断更新,保持紧凑且信息丰富。StreamV2V以其适应性和效率脱颖而出,无需微调即可与图像扩散模型无缝集成。
视频生成的时空扩散模型
Lumiere是一个文本到视频扩散模型,旨在合成展现真实、多样和连贯运动的视频,解决视频合成中的关键挑战。我们引入了一种空时U-Net架构,可以一次性生成整个视频的时间持续,通过模型的单次传递。这与现有的视频模型形成对比,后者合成远距离的关键帧,然后进行时间超分辨率处理,这种方法本质上使得全局时间一致性难以实现。通过部署空间和(重要的是)时间的下采样和上采样,并利用预训练的文本到图像扩散模型,我们的模型学会直接生成多个时空尺度下的全帧率、低分辨率视频。我们展示了最先进的文本到视频生成结果,并展示了我们的设计轻松促进了各种内容创作任务和视频编辑应用,包括图像到视频、视频修补和风格化生成。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
一种基于图像到视频扩散模型的视频编辑技术
I2VEdit是一种创新的视频编辑技术,通过预训练的图像到视频模型,将单一帧的编辑扩展到整个视频。这项技术能够适应性地保持源视频的视觉和运动完整性,并有效处理全局编辑、局部编辑以及适度的形状变化,这是现有方法所不能实现的。I2VEdit的核心包括两个主要过程:粗略运动提取和外观细化,通过粗粒度注意力匹配进行精确调整。此外,还引入了跳过间隔策略,以减轻多个视频片段自动回归生成过程中的质量下降。实验结果表明,I2VEdit在细粒度视频编辑方面的优越性能,证明了其能够产生高质量、时间一致的输出。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
大规模视频生成扩散模型
Sora是一个基于大规模训练的文本控制视频生成扩散模型。它能够生成长达1分钟的高清视频,涵盖广泛的视觉数据类型和分辨率。Sora通过在视频和图像的压缩潜在空间中训练,将其分解为时空位置补丁,实现了可扩展的视频生成。Sora还展现出一些模拟物理世界和数字世界的能力,如三维一致性和交互,揭示了继续扩大视频生成模型规模来发展高能力模拟器的前景。
自定义文本到视频扩散模型的动作
MotionDirector是一种能够自定义文本到视频扩散模型以生成具有所需动作的视频的技术。它采用双路径LoRAs架构,以解耦外观和运动的学习,并设计了一种新颖的去偏置时间损失,以减轻外观对时间训练目标的影响。该方法支持各种下游应用,如混合不同视频的外观和运动,以及用定制动作为单个图像添加动画。
视频运动编辑的轻量级得分引导扩散模型
MotionFollower是一个轻量级的得分引导扩散模型,用于视频运动编辑。它通过两个轻量级信号控制器,分别对姿势和外观进行控制,不涉及繁重的注意力计算。该模型设计了基于双分支架构的得分引导原则,包括重建和编辑分支,显著增强了对纹理细节和复杂背景的建模能力。实验表明,MotionFollower在GPU内存使用上比最先进的运动编辑模型MotionEditor减少了约80%,同时提供了更优越的运动编辑性能,并独家支持大范围的摄像机运动和动作。
开源框架,加速大型视频扩散模型
FastVideo是一个开源框架,旨在加速大型视频扩散模型。它提供了FastHunyuan和FastMochi两种一致性蒸馏视频扩散模型,实现了8倍推理速度提升。FastVideo基于PCM(Phased-Consistency-Model)提供了首个开放的视频DiT蒸馏配方,支持对最先进的开放视频DiT模型进行蒸馏、微调和推理,包括Mochi和Hunyuan。此外,FastVideo还支持使用FSDP、序列并行和选择性激活检查点进行可扩展训练,以及使用LoRA、预计算潜在和预计算文本嵌入进行内存高效微调。FastVideo的开发正在进行中,技术高度实验性,未来计划包括增加更多蒸馏方法、支持更多模型以及代码更新。
无限画板 + 无限创意支持画宇宙系列模型、百度文心 AI 绘画大模型、Draft、社区大模型等多种模型
画宇宙是一款集成了无限画板和无限创意支持的艺术展产品。它支持画宇宙系列模型、百度文心 AI 绘画大模型、Draft、社区大模型等多种模型。通过融汇各类 AI 能力,打造 AIGC 超级平台,帮助用户实现创意和灵感的绘画。产品定价根据用户需求定制化,提供定制化服务和企业解决方案。
高清视频逆问题求解器,使用潜在扩散模型
VISION XL是一个利用潜在扩散模型解决高清视频逆问题的框架。它通过伪批量一致性采样策略和批量一致性反演方法,优化了视频处理的效率和时间,支持多种比例和高分辨率重建。该技术的主要优点包括支持多比例和高分辨率重建、内存和采样时间效率、使用开源潜在扩散模型SDXL。它通过集成SDXL,在各种时空逆问题上实现了最先进的视频重建,包括复杂的帧平均和各种空间退化的组合,如去模糊、超分辨率和修复。
改进扩散模型采样质量的免费方法
FreeU是一种方法,可以在不增加成本的情况下显著提高扩散模型的采样质量:无需训练,无需引入额外参数,无需增加内存或采样时间。该方法通过重新加权U-Net的跳跃连接和主干特征图的贡献,结合U-Net架构的两个组成部分的优势,从而提高生成质量。通过在图像和视频生成任务上进行实验,我们证明了FreeU可以轻松集成到现有的扩散模型中,例如Stable Diffusion、DreamBooth、ModelScope、Rerender和ReVersion,只需几行代码即可改善生成质量。
视频处理工具,实现从图像到视频的转换。
ComfyUI-CogVideoXWrapper 是一个基于Python的视频处理模型,它通过使用T5模型进行视频内容的生成和转换。该模型支持从图像到视频的转换工作流程,并在实验阶段展现出有趣的效果。它主要针对需要进行视频内容创作和编辑的专业用户,尤其是在视频生成和转换方面有特殊需求的用户。
加速视频扩散模型,生成速度提升 8.5 倍。
AccVideo 是一种新颖的高效蒸馏方法,通过合成数据集加速视频扩散模型的推理速度。该模型能够在生成视频时实现 8.5 倍的速度提升,同时保持相似的性能。它使用预训练的视频扩散模型生成多条有效去噪轨迹,从而优化了数据的使用和生成过程。AccVideo 特别适用于需要高效视频生成的场景,如电影制作、游戏开发等,适合研究人员和开发者使用。
稳定签名:将水印根植于潜在扩散模型中
Stable Signature是一种将水印嵌入图像中的方法,它使用潜在扩散模型(LDM)来提取和嵌入水印。该方法具有高度的稳定性和鲁棒性,可以在多种攻击下保持水印的可读性。Stable Signature提供了预训练模型和代码实现,用户可以使用它来嵌入和提取水印。
SeedVR: 一种用于通用视频修复的扩散变换器模型
SeedVR 是一种创新的扩散变换器模型,专门用于处理真实世界中的视频修复任务。该模型通过其独特的移位窗口注意力机制,能够高效地处理任意长度和分辨率的视频序列。SeedVR 的设计使其在生成能力和采样效率方面都取得了显著的提升,相较于传统的扩散模型,它在合成和真实世界的基准测试中均表现出色。此外,SeedVR 还结合了因果视频自编码器、混合图像和视频训练以及渐进式训练等现代实践,进一步提高了其在视频修复领域的竞争力。作为一种前沿的视频修复技术,SeedVR 为视频内容创作者和后期制作人员提供了一种强大的工具,能够显著提升视频质量,尤其是在处理低质量或损坏的视频素材时。
通过扩散模型实现单目视频的相机轨迹重定向。
TrajectoryCrafter 是一种先进的相机轨迹重定向工具,利用扩散模型技术,将单目视频中的相机运动重新设计,提升视频的表现力和视觉吸引力。该技术可广泛应用于影视制作和虚拟现实等领域,具备高效、便捷和创新的特点,旨在为用户提供更多创意自由和控制能力。
基于音频条件的潜在扩散模型的唇部同步框架
LatentSync 是由字节跳动开发的一款基于音频条件的潜在扩散模型的唇部同步框架。它能够直接利用 Stable Diffusion 的强大能力,无需任何中间运动表示,即可建模复杂的音视频关联。该框架通过提出的时间表示对齐(TREPA)技术,有效提升了生成视频帧的时间一致性,同时保持了唇部同步的准确性。该技术在视频制作、虚拟主播、动画制作等领域具有重要应用价值,能够显著提高制作效率,降低人工成本,为用户带来更加逼真、自然的视听体验。LatentSync 的开源特性也使其能够被广泛应用于学术研究和工业实践,推动相关技术的发展和创新。
利用AI技术快速生成视频内容
AI视频生成神器是一款利用人工智能技术,将图片或文字转换成视频内容的在线工具。它通过深度学习算法,能够理解图片和文字的含义,自动生成具有吸引力的视频内容。这种技术的应用,极大地降低了视频制作的成本和门槛,使得普通用户也能轻松制作出专业级别的视频。产品背景信息显示,随着社交媒体和视频平台的兴起,用户对视频内容的需求日益增长,而传统的视频制作方式成本高、耗时长,难以满足快速变化的市场需求。AI视频生成神器的出现,正好填补了这一市场空白,为用户提供了一种快速、低成本的视频制作解决方案。目前,该产品提供免费试用,具体价格需要在网站上查询。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
利用预训练的图像到视频扩散模型生成连贯中间帧
该产品是一个图像到视频的扩散模型,通过轻量级的微调技术,能够从一对关键帧生成具有连贯运动的连续视频序列。这种方法特别适用于需要在两个静态图像之间生成平滑过渡动画的场景,如动画制作、视频编辑等。它利用了大规模图像到视频扩散模型的强大能力,通过微调使其能够预测两个关键帧之间的视频,从而实现前向和后向的一致性。
AI赋能的短视频生产平台,批量生成多样化视频内容。
Giga视频超级工厂是一款基于AI技术,融合多项智能能力的视频生产平台。它通过智能化技术和工业化生产线,实现短视频的批量生产,让创意快速变为现实。产品具备视频生视频、图文生视频、报纸生视频以及视频智能翻译等功能,适用于新闻报道、企业宣传、活动推广等多种场景,助力用户高效制作并传播视频内容。
基于扩散模型的图像和视频生成工具
HelloMeme是一个集成了空间编织注意力(Spatial Knitting Attentions)的扩散模型,用于嵌入高级别和细节丰富的条件。该模型支持图像和视频的生成,具有改善生成视频与驱动视频之间表情一致性、减少VRAM使用、优化算法等优点。HelloMeme由HelloVision团队开发,属于HelloGroup Inc.,是一个前沿的图像和视频生成技术,具有重要的商业和教育价值。
对话式视频代理,结合大型语言模型与视频处理API。
Jockey是一个基于Twelve Labs API和LangGraph构建的对话式视频代理。它将现有的大型语言模型(Large Language Models, LLMs)的能力与Twelve Labs的API结合使用,通过LangGraph进行任务分配,将复杂视频工作流程的负载分配给适当的基础模型。LLMs用于逻辑规划执行步骤并与用户交互,而与视频相关的任务则传递给由视频基础模型(Video Foundation Models, VFMs)支持的Twelve Labs API,以原生方式处理视频,无需像预先生成的字幕这样的中介表示。
© 2025 AIbase 备案号:闽ICP备08105208号-14