需求人群:
"目标受众包括研究人员、开发者和企业,他们需要在移动设备上实现强大的视觉、语音和多模态交互功能,如智能助手、内容创作、教育应用等。该模型适合需要高效、高性能多模态处理能力的用户和组织。"
使用场景示例:
在教育领域,教师可以利用MiniCPM-o 2.6创建互动式教学内容,通过语音和视觉辅助提高学生的学习体验。
内容创作者可以使用该模型生成创意视频脚本,结合视觉和语音元素,提升内容的吸引力。
企业可以部署MiniCPM-o 2.6来开发智能客服系统,通过多模态交互提高客户服务质量和效率。
产品特色:
领先的视觉能力:在OpenCompass等8个流行基准测试中平均得分70.2,超越多个知名模型。
先进的语音能力:支持双语实时语音对话,具备可配置的声音,语音理解任务表现优异。
强大的多模态直播能力:能够接受连续的视频和音频流,支持实时语音交互。
强大的OCR能力:可处理任意宽高比和高达180万像素的图像,OCR性能出色。
优越的效率:具有高像素密度,处理180万像素图像仅产生640个token,提高推理速度和降低内存使用。
使用教程:
1. 克隆MiniCPM-o仓库并导航到源文件夹。
2. 创建conda环境并激活。
3. 安装依赖项。
4. 下载并加载MiniCPM-o 2.6模型。
5. 使用PIL库加载图像或其他模态数据。
6. 使用模型的chat方法进行多轮对话,传递消息和tokenizer。
7. 根据需要调整参数,如sampling、max_new_tokens等,以优化输出。
浏览量:41
最新流量情况
月访问量
5.03m
平均访问时长
00:06:29
每次访问页数
5.88
跳出率
37.10%
流量来源
直接访问
52.07%
自然搜索
32.84%
邮件
0.04%
外链引荐
12.88%
社交媒体
2.04%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.85%
德国
3.90%
印度
9.41%
俄罗斯
4.16%
美国
18.95%
MiniCPM-o 2.6:一款GPT-4o级别,可在手机上实现视觉、语音和多模态直播的MLLM。
MiniCPM-o 2.6 是OpenBMB团队开发的最新多模态大型语言模型(MLLM),具有8B参数,能够在手机等端侧设备上实现高质量的视觉、语音和多模态直播功能。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,采用端到端的方式训练,性能与GPT-4o-202405相当。其主要优点包括领先的视觉能力、先进的语音能力、强大的多模态直播能力、强大的OCR能力以及优越的效率。该模型免费开源,适用于学术研究和商业用途。
通用型视觉语言模型
Qwen-VL 是阿里云推出的通用型视觉语言模型,具有强大的视觉理解和多模态推理能力。它支持零样本图像描述、视觉问答、文本理解、图像地标定位等任务,在多个视觉基准测试中达到或超过当前最优水平。该模型采用 Transformer 结构,以 7B 参数规模进行预训练,支持 448x448 分辨率,可以端到端处理图像与文本的多模态输入与输出。Qwen-VL 的优势包括通用性强、支持多语种、细粒度理解等。它可以广泛应用于图像理解、视觉问答、图像标注、图文生成等任务。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
MiniCPM-o 2.6是一个强大的多模态大型语言模型,适用于视觉、语音和多模态直播。
MiniCPM-o 2.6是MiniCPM-o系列中最新且功能最强大的模型。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,拥有8B参数。它在视觉理解、语音交互和多模态直播方面表现出色,支持实时语音对话和多模态直播功能。该模型在开源社区中表现优异,超越了多个知名模型。其优势在于高效的推理速度、低延迟、低内存和功耗,能够在iPad等终端设备上高效支持多模态直播。此外,MiniCPM-o 2.6易于使用,支持多种使用方式,包括llama.cpp的CPU推理、int4和GGUF格式的量化模型、vLLM的高吞吐量推理等。
3D人体动作的言语和非言语语言统一模型
这是一个由斯坦福大学研究团队开发的多模态语言模型框架,旨在统一3D人体动作中的言语和非言语语言。该模型能够理解并生成包含文本、语音和动作的多模态数据,对于创建能够自然交流的虚拟角色至关重要,广泛应用于游戏、电影和虚拟现实等领域。该模型的主要优点包括灵活性高、训练数据需求少,并且能够解锁如可编辑手势生成和从动作中预测情感等新任务。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
轻量级语言模型编程库,将提示视为函数。
ell是一个轻量级的语言模型编程库,它将提示视为函数,而不是简单的字符串。ell的设计基于在OpenAI和创业生态系统中多年构建和使用语言模型的经验。它提供了一种全新的编程方式,允许开发者通过定义函数来生成发送给语言模型的字符串提示或消息列表。这种封装方式为用户创建了一个清晰的接口,用户只需关注LMP所需的数据。ell还提供了丰富的工具,支持监控、版本控制和可视化,使得提示工程从一门黑艺术转变为一门科学。
与私有自托管语言模型对话的iOS/macOS应用
Enchanted是一个开源的、兼容Ollama的macOS/iOS/visionOS应用,它允许用户与私有自托管的语言模型如Llama 2、Mistral、Vicuna等进行对话。它基本上是一个连接到私有模型的ChatGPT应用界面。Enchanted的目标是提供一个产品,允许在iOS生态系统(macOS、iOS、Watch、Vision Pro)的所有设备上提供无过滤、安全、私密和多模态的体验。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
微软轻量级、先进的多模态模型,专注于文本和视觉的高质量推理密集数据。
Phi-3 Vision是一个轻量级、最先进的开放多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的非常高质量的推理密集数据。该模型属于Phi-3模型家族,多模态版本支持128K上下文长度(以token计),经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
Easy With AI是一个集成了50多个不同类别AI工具和资源的平台。
Easy With AI是一个拥有互联网上最大的AI工具和资源收藏的平台。您可以在50多个不同的类别中查找和搜索AI工具。Easy With AI为各种用户提供了便利和丰富的AI工具资源,包括AI写作助手、社交媒体工具、电子邮件工具、AI内容检测工具、客户服务工具、网站建设工具、电子商务工具、图像工具、音频工具、视频工具、音乐生成器、视频生成器、播客工具、演示制作工具、设计工具、直播工具、聊天机器人、语音工具、移动应用、转录工具、会议助手、建筑工具、生产力工具、教育工具、AI Chrome扩展和更多。您可以根据您的需求和兴趣,在Easy With AI上找到适合您的AI工具。
一款强大的多模态小语言模型
Imp项目旨在提供一系列强大的多模态小语言模型(MSLMs)。我们的imp-v1-3b是一个拥有30亿参数的强大MSLM,它建立在一个小而强大的SLM Phi-2(27亿)和一个强大的视觉编码器SigLIP(4亿)之上,并在LLaVA-v1.5训练集上进行了训练。Imp-v1-3b在各种多模态基准测试中明显优于类似模型规模的对手,甚至在各种多模态基准测试中表现略优于强大的LLaVA-7B模型。
一款强大的小型视觉语言模型,无处不在
moondream是一个使用SigLIP、Phi-1.5和LLaVA训练数据集构建的16亿参数模型。由于使用了LLaVA数据集,权重受CC-BY-SA许可证保护。您可以在Huggingface Spaces上尝试使用它。该模型在VQAv2、GQA、VizWiz和TextVQA基准测试中表现如下:LLaVA-1.5(13.3B参数):80.0、63.3、53.6、61.3;LLaVA-1.5(7.3B参数):78.5、62.0、50.0、58.2;MC-LLaVA-3B(3B参数):64.2、49.6、24.9、38.6;LLaVA-Phi(3B参数):71.4、-、35.9、48.6;moondream1(1.6B参数):74.3、56.3、30.3、39.8。
多模态语言模型预测网络
Honeybee是一个适用于多模态语言模型的局部性增强预测器。它能够提高多模态语言模型在不同下游任务上的性能,如自然语言推理、视觉问答等。Honeybee的优势在于引入了局部性感知机制,可以更好地建模输入样本之间的依赖关系,从而增强多模态语言模型的推理和问答能力。
高效多模态大型语言模型
TinyGPT-V 是一种高效的多模态大型语言模型,通过使用小型骨干网络来实现。它具有强大的语言理解和生成能力,适用于各种自然语言处理任务。TinyGPT-V 采用 Phi-2 作为预训练模型,具备出色的性能和效率。
学习模型间字符串关系,检查视觉世界
这篇论文系统评估了大型语言模型(LLMs)生成和识别逐渐复杂的视觉概念的能力,并展示了如何使用文本模型训练初步的视觉表示学习系统。虽然语言模型不能直接处理像素级的视觉信息,但使用代码表示图像进行研究。LLM 生成的图像虽然不像自然图像,但在图像生成和纠正方面的结果表明,准确建模字符串可以教会语言模型许多关于视觉世界的方面。此外,利用文本模型生成的图像进行自监督视觉表示学习的实验,突出了只使用 LLMs 就能训练能够对自然图像进行语义评估的视觉模型的潜力。
开源视觉基础模型
InternVL通过将ViT模型扩展到60亿参数并与语言模型对齐,构建出目前最大的14B开源视觉基础模型,在视觉感知、跨模态检索、多模态对话等广泛任务上取得了32项state-of-the-art性能。
端到端MLLM,实现精准引用和定位
ml-ferret是一个端到端的机器学习语言模型(MLLM),能够接受各种形式的引用并响应性地在多模态环境中进行精准定位。它结合了混合区域表示和空间感知的视觉采样器,支持细粒度和开放词汇的引用和定位。此外,ml-ferret还包括GRIT数据集(约110万个样本)和Ferret-Bench评估基准。
发现 LLM 的创意与幽默潜力
CLoT 是一个用于探索大型语言模型创意能力的创新工具。它通过生成幽默的回应来挑战用户的思维,帮助用户发现语言模型的潜力。CLoT 不仅限于幽默生成,还可以用于其他创意任务。请访问我们的官方网站了解更多信息。
多模态综合理解与创作
DreamLLM是一个学习框架,首次实现了多模态大型语言模型(LLM)在多模态理解和创作之间的协同效应。它通过直接在原始多模态空间中进行采样,生成语言和图像的后验模型。这种方法避免了像CLIP这样的外部特征提取器所固有的限制和信息损失,从而获得了更全面的多模态理解。DreamLLM还通过建模文本和图像内容以及无结构布局的原始交叉文档,有效地学习了所有条件、边缘和联合多模态分布。因此,DreamLLM是第一个能够生成自由形式交叉内容的MLLM。全面的实验证明了DreamLLM作为零样本多模态通才的卓越性能,充分利用了增强的学习协同效应。
VideoRAG 是一个用于处理极长上下文视频的检索增强型生成框架。
VideoRAG 是一种创新的检索增强型生成框架,专门用于理解和处理极长上下文视频。它通过结合图驱动的文本知识锚定和层次化多模态上下文编码,实现了对无限制长度视频的理解。该框架能够动态构建知识图谱,保持多视频上下文的语义连贯性,并通过自适应多模态融合机制优化检索效率。VideoRAG 的主要优点包括高效的极长上下文视频处理能力、结构化的视频知识索引以及多模态检索能力,使其能够为复杂查询提供全面的回答。该框架在长视频理解领域具有重要的技术价值和应用前景。
MedRAX是一个用于胸部X光片解读的医疗推理AI代理,整合多种分析工具,无需额外训练即可处理复杂医疗查询。
MedRAX是一个创新的AI框架,专门用于胸部X光(CXR)的智能分析。它通过整合最先进的CXR分析工具和多模态大型语言模型,能够动态处理复杂的医疗查询。MedRAX无需额外训练即可运行,支持实时CXR解读,适用于多种临床场景。其主要优点包括高度的灵活性、强大的推理能力以及透明的工作流程。该产品面向医疗专业人员,旨在提高诊断效率和准确性,推动医疗AI的实用化。
一个用于生成播客及其他音频文件转录文本的工具,支持多种语言模型和语音识别API。
Podscript 是一个强大的音频转录工具,它利用语言模型和语音到文本(STT)API,为播客和其他音频内容生成高质量的转录文本。该工具支持多种流行的STT服务,如Deepgram、AssemblyAI和Groq,并且可以处理YouTube视频的自动生成字幕。Podscript的主要优点是其灵活性和易用性,用户可以通过简单的命令行界面或方便的Web界面来操作。它适用于播客创作者、内容制作者以及需要快速转录音频的用户。Podscript是开源的,用户可以根据自己的需求进行定制和扩展。
Orate 是一个专注于语音的 AI 工具包,支持文本转语音、语音转文本等功能。
Orate 是一个强大的 AI 语音工具包,能够将文本转换为逼真的语音,也可以将语音转换为文本,支持多种主流 AI 服务提供商。其主要优点是提供了一个统一的 API 接口,方便开发者快速集成和使用。该工具包适用于需要语音交互功能的应用开发,例如智能语音助手、语音播报系统等。其价格和具体定位尚未明确,但从其功能和社区反馈来看,具有较高的实用性和开发价值。
Qwen2.5-VL 是一款强大的视觉语言模型,能够理解图像和视频内容并生成相应文本。
Qwen2.5-VL 是 Qwen 团队推出的最新旗舰视觉语言模型,是视觉语言模型领域的重要进步。它不仅能够识别常见物体,还能分析图像中的文字、图表、图标等复杂内容,并支持对长视频的理解和事件定位。该模型在多个基准测试中表现出色,尤其在文档理解和视觉代理任务中具有显著优势,展现了强大的视觉理解和推理能力。其主要优点包括高效的多模态理解、强大的长视频处理能力以及灵活的工具调用能力,适用于多种应用场景。
Xwen-Chat是专注中文对话的大语言模型集合,提供多版本模型及语言生成服务
Xwen-Chat由xwen-team开发,为满足高质量中文对话模型需求而生,填补领域空白。其有多个版本,具备强大语言理解与生成能力,可处理复杂语言任务,生成自然对话内容,适用于智能客服等场景,在Hugging Face平台免费提供。
一个基于LLM的创意命名工具,帮助用户快速生成独特的名称。
LLM Codenames 是一个基于语言模型的创意命名工具。它利用先进的自然语言处理技术,能够根据用户输入的关键词或主题,快速生成一系列独特且富有创意的名称。这种工具对于需要进行品牌命名、产品命名或创意写作的用户来说非常实用。它可以帮助用户节省大量时间和精力,避免命名过程中的重复劳动。LLM Codenames 的主要优点是其高效性和创意性,能够提供多样化的命名选择,满足不同用户的需求。该工具目前以网站形式提供服务,用户可以通过浏览器直接访问使用,无需安装任何软件。
为语言模型和AI代理提供视频处理服务,支持多种视频来源。
Deeptrain 是一个专注于视频处理的平台,旨在将视频内容无缝集成到语言模型和AI代理中。通过其强大的视频处理技术,用户可以像使用文本和图像一样轻松地利用视频内容。该产品支持超过200种语言模型,包括GPT-4o、Gemini等,并且支持多语言视频处理。Deeptrain 提供免费的开发支持,仅在生产环境中使用时才收费,这使得它成为开发AI应用的理想选择。其主要优点包括强大的视频处理能力、多语言支持以及与主流语言模型的无缝集成。
© 2025 AIbase 备案号:闽ICP备08105208号-14