需求人群:
["3D内容创作","3D物体设计","虚拟世界构建"]
使用场景示例:
使用文字描述“椅子”生成3D椅子模型
从汽车照片生成3D汽车模型
从多个角度拍摄的房间图片生成房间3D模型
产品特色:
从文本提示生成3D模型
从单视图图像生成3D模型
实现高分辨率(512x512)的3D内容生成
不同iable 渲染
浏览量:101
最新流量情况
月访问量
4122
平均访问时长
00:04:05
每次访问页数
1.94
跳出率
64.24%
流量来源
直接访问
44.46%
自然搜索
29.79%
邮件
0.04%
外链引荐
17.83%
社交媒体
7.39%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
14.60%
美国
85.40%
高分辨率3D内容生成的多视图高斯模型
LGM是一个用于从文本提示或单视图图像生成高分辨率3D模型的新框架。它的关键见解是:(1) 3D表示:我们提出了多视图高斯特征作为一个高效 yet 强大的表示,然后可以将其融合在一起进行不同iable 渲染。(2) 3D主干:我们呈现了一个不对称U-Net作为一个高通量的主干操作多视图图像,这可以通过利用多视图扩散模型从文本或单视图图像输入中产生。大量的实验表明了我们方法的高保真度和效率。值得注意的是,我们在将训练分辨率提高到512的同时保持生成3D对象的快速速度,从而实现了高分辨率的3D内容生成。
腾讯推出的3D生成框架,支持文本和图像到3D的生成。
Hunyuan3D-1是腾讯推出的一个统一框架,用于文本到3D和图像到3D的生成。该框架采用两阶段方法,第一阶段使用多视图扩散模型快速生成多视图RGB图像,第二阶段通过前馈重建模型快速重建3D资产。Hunyuan3D-1.0在速度和质量之间取得了令人印象深刻的平衡,显著减少了生成时间,同时保持了生成资产的质量和多样性。
基于参考增强扩散的3D内容生成模型
Phidias是一个创新的生成模型,它利用扩散技术进行参考增强的3D生成。该模型通过图像、文本或3D条件生成高质素的3D资产,并且能够在几秒钟内完成。它通过整合三个关键组件:动态调节条件强度的Meta-ControlNet、动态参考路由以及自参考增强,显著提高了生成质量、泛化能力和可控性。Phidias为使用文本、图像和3D条件进行3D生成提供了统一框架,并具有多种应用场景。
一种通过3D感知递归扩散生成3D模型的框架
Ouroboros3D是一个统一的3D生成框架,它将基于扩散的多视图图像生成和3D重建集成到一个递归扩散过程中。该框架通过自条件机制联合训练这两个模块,使它们能够相互适应,以实现鲁棒的推理。在多视图去噪过程中,多视图扩散模型使用由重建模块在前一时间步渲染的3D感知图作为附加条件。递归扩散框架与3D感知反馈相结合,提高了整个过程的几何一致性。实验表明,Ouroboros3D框架在性能上优于将这两个阶段分开训练的方法,以及在推理阶段将它们结合起来的现有方法。
快速生成三维模型的AI工具
AI 3D Generation是Spline推出的一款3D设计工具,它支持文本到3D生成和图像到3D生成,允许用户通过简单的文本提示或2D图像自动创建出详细且精确的3D模型。该工具具有生成变体与混合、直观且适合初学者、创建独特的3D库、平台集成与实时协作、易于集成和发布等功能。
将您的想象力变为现实,快速制作艺术图像、横幅图像和动漫图像。
Image Maker Ai 是一个基于人工智能的图像生成平台,利用先进的变换器模型和BlackForestLabs的最新AI研究,提供从高端专业项目到快速个人使用的多种需求。该技术拥有12亿参数和多个模型变体,包括FLUX.1 [Pro]、[Dev]和[Schnell],优化了提示遵循、细节和输出多样性。Image Maker Ai 允许用户输入文本提示,选择风格,并由AI生成高分辨率、细节丰富、逼真的图像,适合各种应用,从个人项目到专业用途。所有由Flux生成的图像都是免版税的,可以用于个人或商业目的,无需担心版权问题。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
高分辨率图像生成模型
FLUX1.1 [pro] 是一款高分辨率图像生成模型,支持高达4MP的图像分辨率,同时保持每样本仅10秒的生成时间。FLUX1.1 [pro] – ultra模式能够在不牺牲速度的情况下,生成四倍于标准分辨率的图像,性能基准测试显示其生成速度超过同类高分辨率模型2.5倍以上。此外,FLUX1.1 [pro] – raw模式为追求真实感的创作者提供了更自然、更少合成感的图像生成效果,显著提高了人物多样性和自然摄影的真实性。该模型以每张图片0.06美元的竞争力价格提供。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
首个同时支持文生和图生的3D开源模型
腾讯混元3D是一个开源的3D生成模型,旨在解决现有3D生成模型在生成速度和泛化能力上的不足。该模型采用两阶段生成方法,第一阶段使用多视角扩散模型快速生成多视角图像,第二阶段通过前馈重建模型快速重建3D资产。混元3D-1.0模型能够帮助3D创作者和艺术家自动化生产3D资产,支持快速单图生3D,10秒内完成端到端生成,包括mesh和texture提取。
AI视频生成器,从文本提示生成高质量视频
Mochi 1是一个由Genmo开发的前沿开源AI视频生成器,它允许创作者使用文本和图像提示生成高质量、逼真的视频。Mochi 1以其卓越的提示遵循能力和流畅的运动效果,使AI视频生成对每个人都变得容易。它旨在与行业其他模型竞争,为创作者提供更多的控制和更好的视觉成果。
基于Flux的IC-Light模型,专注于图像细节保留和风格化处理
IC-Light V2是一系列基于Flux的IC-Light模型,采用16ch VAE和原生高分辨率技术。该模型在细节保留、风格化图像处理等方面相较于前代有显著提升。它特别适合需要在保持图像细节的同时进行风格化处理的应用场景。目前,该模型以非商业性质发布,主要面向个人用户和研究者。
高分辨率、长时音频驱动的人像图像动画技术
Hallo2是一种基于潜在扩散生成模型的人像图像动画技术,通过音频驱动生成高分辨率、长时的视频。它通过引入多项设计改进,扩展了Hallo的功能,包括生成长时视频、4K分辨率视频,并增加了通过文本提示增强表情控制的能力。Hallo2的主要优点包括高分辨率输出、长时间的稳定性以及通过文本提示增强的控制性,这使得它在生成丰富多样的肖像动画内容方面具有显著优势。
高分辨率文本到图像合成模型
Meissonic是一个非自回归的掩码图像建模文本到图像合成模型,能够生成高分辨率的图像。它被设计为可以在消费级显卡上运行。这项技术的重要性在于其能够利用现有的硬件资源,为用户带来高质量的图像生成体验,同时保持了较高的运行效率。Meissonic的背景信息包括其在arXiv上发表的论文,以及在Hugging Face上的模型和代码。
基于AI的快速在线制作证件照工具
photo4you是一个基于人工智能技术的在线证件照制作网站,用户无需下载或安装任何软件即可轻松创建证件照片。该网站支持多种标准尺寸,适用于护照、签证、驾照等官方文件。它通过智能背景移除功能,自动去除照片背景,确保证件照具有清晰、专业的外观。用户可以立即下载制作好的证件照,节省了时间和麻烦。photo4you提供高分辨率的输出,适合打印或数字提交。
从单目视频生成高质量4D对象的新型框架
DreamMesh4D是一个结合了网格表示与稀疏控制变形技术的新型框架,能够从单目视频中生成高质量的4D对象。该技术通过结合隐式神经辐射场(NeRF)或显式的高斯绘制作为底层表示,解决了传统方法在空间-时间一致性和表面纹理质量方面的挑战。DreamMesh4D利用现代3D动画流程的灵感,将高斯绘制绑定到三角网格表面,实现了纹理和网格顶点的可微优化。该框架开始于由单图像3D生成方法提供的粗糙网格,通过均匀采样稀疏点来构建变形图,以提高计算效率并提供额外的约束。通过两阶段学习,结合参考视图光度损失、得分蒸馏损失以及其他正则化损失,实现了静态表面高斯和网格顶点以及动态变形网络的学习。DreamMesh4D在渲染质量和空间-时间一致性方面优于以往的视频到4D生成方法,并且其基于网格的表示与现代几何流程兼容,展示了其在3D游戏和电影行业的潜力。
基于级联扩散的文本到图像生成系统
CogView3是一个基于级联扩散的文本到图像生成系统,使用中继扩散框架。该系统通过将高分辨率图像生成过程分解为多个阶段,并通过中继超分辨率过程,在低分辨率生成结果上添加高斯噪声,从而开始从这些带噪声的图像进行扩散过程。CogView3在生成图像方面超越了SDXL,具有更快的生成速度和更高的图像质量。
利用扩散变换器生成高质量的3D资产。
3DTopia-XL 是一个基于扩散变换器(DiT)构建的高质量3D资产生成技术,使用一种新颖的3D表示方法 PrimX。该技术能够将3D形状、纹理和材质编码到一个紧凑的N x D张量中,每个标记是一个体积原语,锚定在形状表面上,用体素化载荷编码符号距离场(SDF)、RGB和材质。这一过程仅需5秒即可从文本/图像输入生成3D PBR资产,适用于图形管道。
高分辨率视频外延与内容生成技术
Follow-Your-Canvas 是一种基于扩散模型的视频外延技术,它能够生成高分辨率的视频内容。该技术通过分布式处理和空间窗口合并,解决了GPU内存限制问题,同时保持了视频的空间和时间一致性。它在大规模视频外延方面表现出色,能够将视频分辨率显著提升,如从512 X 512扩展到1152 X 2048,同时生成高质量和视觉上令人愉悦的结果。
3D生成模型的创新突破
VFusion3D是一种基于预训练的视频扩散模型构建的可扩展3D生成模型。它解决了3D数据获取困难和数量有限的问题,通过微调视频扩散模型生成大规模合成多视角数据集,训练出能够从单张图像快速生成3D资产的前馈3D生成模型。该模型在用户研究中表现出色,用户超过90%的时间更倾向于选择VFusion3D生成的结果。
快速从单张图片生成3D模型。
Stable Fast 3D (SF3D) 是一个基于TripoSR的大型重建模型,能够从单张物体图片生成带有纹理的UV展开3D网格资产。该模型训练有素,能在不到一秒的时间内创建3D模型,具有较低的多边形计数,并且进行了UV展开和纹理处理,使得模型在下游应用如游戏引擎或渲染工作中更易于使用。此外,模型还能预测每个物体的材料参数(粗糙度、金属感),在渲染过程中增强反射行为。SF3D适用于需要快速3D建模的领域,如游戏开发、电影特效制作等。
生成无限长度视频的文本条件视频生成技术
FIFO-Diffusion是一种基于预训练扩散模型的新颖推理技术,用于文本条件视频生成。它能够无需训练生成无限长的视频,通过迭代执行对角去噪,同时处理队列中一系列连续帧的逐渐增加的噪声水平;该方法在头部出队一个完全去噪的帧,同时在尾部入队一个新的随机噪声帧。此外,引入了潜在分割来减少训练推理差距,并通过前瞻去噪来利用前向引用的好处。
通过交互式3D生成技术,实现高质量且可控的3D模型创建。
Interactive3D是一个先进的3D生成模型,它通过交互式设计为用户提供了精确的控制能力。该模型采用两阶段级联结构,利用不同的3D表示方法,允许用户在生成过程的任何中间步骤进行修改和引导。它的重要性在于能够实现用户对3D模型生成过程的精细控制,从而创造出满足特定需求的高质量3D模型。
基于SDXL的ControlNet Tile模型,适用于Stable Diffusion SDXL ControlNet的高分辨率图像修复。
这是一个基于SDXL的ControlNet Tile模型,使用Hugging Face Diffusers训练集,适用于Stable Diffusion SDXL ControlNet。它最初是为我自己的逼真模型训练,用于终极放大过程以提高图像细节。使用合适的工作流程,它可以为高细节、高分辨率的图像修复提供良好的结果。由于大多数开源没有SDXL Tile模型,我决定分享这个模型。该模型支持高分辨率修复、风格迁移和图像修复等功能,可以为你提供高质量的图像处理体验。
用于高质量高效3D重建和生成的大型高斯重建模型
GRM是一种大规模的重建模型,能够在0.1秒内从稀疏视图图像中恢复3D资产,并且在8秒内实现生成。它是一种前馈的基于Transformer的模型,能够高效地融合多视图信息将输入像素转换为像素对齐的高斯分布,这些高斯分布可以反投影成为表示场景的密集3D高斯分布集合。我们的Transformer架构和使用3D高斯分布的方式解锁了一种可扩展、高效的重建框架。大量实验结果证明了我们的方法在重建质量和效率方面优于其他替代方案。我们还展示了GRM在生成任务(如文本到3D和图像到3D)中的潜力,通过与现有的多视图扩散模型相结合。
从单张图片生成高质量3D视图和新颖视角的3D生成技术
Stable Video 3D是Stability AI推出的新模型,它在3D技术领域取得了显著进步,与之前发布的Stable Zero123相比,提供了大幅改进的质量和多视角支持。该模型能够在没有相机条件的情况下,基于单张图片输入生成轨道视频,并且能够沿着指定的相机路径创建3D视频。
高分辨率多模态感知 LVLM
Griffon 是第一个具有本地化能力的高分辨率(超过1K)LVLM,可以描述您感兴趣的区域中的所有内容。在最新版本中,Griffon 支持视觉语言共指。您可以输入图像或一些描述。Griffon 在 REC、目标检测、目标计数、视觉/短语定位和 REG 方面表现出色。定价:免费试用。
PIXART-Σ是一个用于4K文本到图像生成的扩散变换器模型(Diffusion Transformer)
PIXART-Σ是一个直接生成4K分辨率图像的扩散变换器模型,相较于前身PixArt-α,它提供了更高的图像保真度和与文本提示更好的对齐。PIXART-Σ的关键特性包括高效的训练过程,它通过结合更高质量的数据,从“较弱”的基线模型进化到“更强”的模型,这一过程被称为“弱到强训练”。PIXART-Σ的改进包括使用更高质量的训练数据和高效的标记压缩。
© 2024 AIbase 备案号:闽ICP备08105208号-14