需求人群:
"目标受众为研究人员和开发者,特别是那些在图像识别、多语言OCR和数学图表等领域寻求高性能视觉模型的专业人士。该模型通过增强视觉编码器的能力,为他们提供了一个强大的工具,以处理和理解复杂的视觉数据。"
使用场景示例:
使用InternViT-300M-448px-V2_5进行图像分类任务,以识别和分类不同的图像内容。
在多语言OCR数据上应用该模型,以提高文本识别的准确性和效率。
利用模型对数学图表进行分析,提取关键的视觉和结构信息,以辅助教育和研究。
产品特色:
- 视觉特征提取:增强模型在提取视觉特征方面的能力,特别是在大规模网络数据集中代表性不足的领域。
- 增量学习与NTP损失:通过ViT增量学习与NTP损失,提升模型处理罕见领域数据的能力。
- 模型架构:保持与前代相同的'ViT-MLP-LLM'模型架构,确保模型的连贯性和性能。
- 多模态数据支持:引入对多图像和视频数据的支持,扩展模型的应用范围。
- 动态高分辨率训练:通过动态高分辨率训练方法,提升模型处理多图像和视频数据集的能力。
- 跨模态对齐:确保模型在多模态训练中的稳定性和鲁棒性。
- 多阶段训练:包括MLP预热、ViT增量学习和全模型指令调整,全面提升模型性能。
使用教程:
1. 导入必要的库,例如torch和transformers。
2. 从Hugging Face模型库中加载InternViT-300M-448px-V2_5模型。
3. 使用PIL库打开并转换图像为RGB格式。
4. 从模型库中加载CLIPImageProcessor以处理图像。
5. 使用image_processor处理图像并获取像素值。
6. 将像素值转换为模型所需的数据类型,并将其传输到GPU。
7. 将处理后的像素值输入模型,获取模型输出。
浏览量:78
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
基于InternViT-300M-448px的增强版本,提升视觉特征提取能力。
InternViT-300M-448px-V2_5是一个基于InternViT-300M-448px的增强版本,通过采用ViT增量学习与NTP损失(Stage 1.5),提升了视觉编码器提取视觉特征的能力,尤其是在大规模网络数据集中代表性不足的领域,如多语言OCR数据和数学图表等。该模型是InternViT 2.5系列的一部分,保留了与前代相同的“ViT-MLP-LLM”模型架构,并集成了新的增量预训练的InternViT与各种预训练的LLMs,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。
基于InternViT-6B-448px-V1-5的增强版视觉模型
InternViT-6B-448px-V2_5是一个基于InternViT-6B-448px-V1-5的视觉模型,通过使用ViT增量学习与NTP损失(阶段1.5),提升了视觉编码器提取视觉特征的能力,尤其是在大规模网络数据集中代表性不足的领域,如多语言OCR数据和数学图表等。该模型是InternVL 2.5系列的一部分,保留了与前代相同的“ViT-MLP-LLM”模型架构,并集成了新增量预训练的InternViT与各种预训练的LLMs,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。
多语言多模态嵌入模型,用于文本和图像检索。
jina-clip-v2是由Jina AI开发的多语言多模态嵌入模型,支持89种语言的图像检索,能够处理512x512分辨率的图像,提供从64到1024不同维度的输出,以适应不同的存储和处理需求。该模型结合了强大的文本编码器Jina-XLM-RoBERTa和视觉编码器EVA02-L14,通过联合训练创建了对齐的图像和文本表示。jina-clip-v2在多模态搜索和检索方面提供了更准确、更易用的能力,特别是在打破语言障碍、提供跨模态理解和检索方面表现出色。
提高大学生自学效率和质量的智能学习助手
夸克App推出的AI学习助手基于自研大模型,通过智能化的解题思路和讲解方式,提升大学生自学效率和质量。采用夸克宝宝的虚拟形象进行题目讲解,提供“考点分析”“详解步骤”“答案总结”等详细内容。并通过夸克网盘实现学习资料备份和使用,以及夸克扫描王提取核心复习内容。覆盖英语等学科的选择题、填空题、阅读题等常考题型,后续将加入数学等学科。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
多模态和多任务模型训练框架
4M是一个用于训练多模态和多任务模型的框架,能够处理多种视觉任务,并且能够进行多模态条件生成。该模型通过实验分析展示了其在视觉任务上的通用性和可扩展性,为多模态学习在视觉和其他领域的进一步探索奠定了基础。
多粒度视觉指令调优的创新MLLM
MG-LLaVA是一个增强模型视觉处理能力的机器学习语言模型(MLLM),通过整合多粒度视觉流程,包括低分辨率、高分辨率和以对象为中心的特征。提出了一个额外的高分辨率视觉编码器来捕捉细节,并通过Conv-Gate融合网络与基础视觉特征融合。此外,通过离线检测器识别的边界框整合对象级特征,以进一步细化模型的对象识别能力。MG-LLaVA仅在公开可用的多模态数据上通过指令调优进行训练,展现出卓越的感知技能。
先进的多模态图像生成模型,结合文本提示和视觉参考生成高质量图像。
Qwen2vl-Flux是一个结合了Qwen2VL视觉语言理解能力的FLUX框架的先进多模态图像生成模型。该模型擅长基于文本提示和视觉参考生成高质量图像,提供卓越的多模态理解和控制。产品背景信息显示,Qwen2vl-Flux集成了Qwen2VL的视觉语言能力,增强了FLUX的图像生成精度和上下文感知能力。其主要优点包括增强的视觉语言理解、多种生成模式、结构控制、灵活的注意力机制和高分辨率输出。
多模态语言模型的视觉推理工具
Visual Sketchpad 是一种为多模态大型语言模型(LLMs)提供视觉草图板和绘图工具的框架。它允许模型在进行规划和推理时,根据自己绘制的视觉工件进行操作。与以往使用文本作为推理步骤的方法不同,Visual Sketchpad 使模型能够使用线条、框、标记等更接近人类绘图方式的元素进行绘图,从而更好地促进推理。此外,它还可以在绘图过程中使用专家视觉模型,例如使用目标检测模型绘制边界框,或使用分割模型绘制掩码,以进一步提高视觉感知和推理能力。
一个集成视觉理解和生成的多模态生成模型。
Liquid 是一个自回归生成模型,通过将图像分解为离散代码并与文本标记共享特征空间,促进视觉理解和文本生成的无缝集成。此模型的主要优点在于无需外部预训练的视觉嵌入,减少了对资源的依赖,同时通过规模法则发现了理解与生成任务之间的相互促进效应。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
先进多模态大型语言模型系列
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型系列在视觉感知和多模态能力方面进行了优化,支持包括图像、文本到文本的转换在内的多种功能,适用于需要处理视觉和语言信息的复杂任务。
创新的多模态链式思维框架,提升视觉推理能力
Cantor是一个多模态链式思维(CoT)框架,它通过感知决策架构,将视觉上下文获取与逻辑推理相结合,解决复杂的视觉推理任务。Cantor首先作为一个决策生成器,整合视觉输入来分析图像和问题,确保与实际情境更紧密的对齐。此外,Cantor利用大型语言模型(MLLMs)的高级认知功能,作为多面专家,推导出更高层次的信息,增强CoT生成过程。Cantor在两个复杂的视觉推理数据集上进行了广泛的实验,证明了所提出框架的有效性,无需微调或真实理由,就显著提高了多模态CoT性能。
多模态知识图谱补全工具
MyGO是一个用于多模态知识图谱补全的工具,它通过将离散模态信息作为细粒度的标记来处理,以提高补全的准确性。MyGO利用transformers库对文本标记进行嵌入,进而在多模态数据集上进行训练和评估。它支持自定义数据集,并且提供了训练脚本以复现实验结果。
UIED用户体验学习平台是由UIED设计团队创建的专注于AIGC技术领域的学习平台。
UIED用户体验学习平台是由UIED设计团队创建的专注于AIGC技术领域的学习平台。该平台旨在为希望深入了解AIGC和AI技术的设计师提供全面的教程、案例分析和实战项目。通过UIED,设计师可以学习AIGC工具的操作方法、探索AI在设计中的应用案例,并利用这些技术优化设计流程,提升创作质量。
轻量级但功能强大的多模态模型家族。
Bunny 是一系列轻量级但功能强大的多模态模型,提供多种即插即用的视图编码器和语言主干网络。通过从更广泛的数据源进行精选选择,构建更丰富的训练数据,以补偿模型尺寸的减小。Bunny-v1.0-3B 模型在性能上超越了同类大小甚至更大的 MLLMs(7B)模型,并与 13B 模型性能相当。
基于《Factorio》游戏的大语言模型测试与学习环境
Factorio Learning Environment(FLE)是基于《Factorio》游戏构建的新型框架,用于评估大型语言模型(LLMs)在长期规划、程序合成和资源优化方面的能力。随着LLMs逐渐饱和现有基准测试,FLE提供了新的开放式评估方式。它的重要性在于能让研究人员更全面、深入地了解LLMs的优势与不足。主要优点是提供了开放式且难度呈指数级增长的挑战,拥有结构化任务和开放式任务两种评估协议。该项目由Jack Hopkins等人开发,以开源形式发布,免费使用,定位是推动AI研究人员对复杂、开放式领域中智能体能力的研究。
从合成数据中学习视觉表示模型
该代码仓库包含从合成图像数据(主要是图片)进行学习的研究,包括StableRep、Scaling和SynCLR三个项目。这些项目研究了如何利用文本到图像模型生成的合成图像数据进行视觉表示模型的训练,并取得了非常好的效果。
视觉定位GUI指令的多模态模型
Aria-UI是一个专为GUI指令视觉定位而设计的大规模多模态模型。它采用纯视觉方法,不依赖辅助输入,能够适应多样化的规划指令,并通过合成多样化、高质量的指令样本来适应不同的任务。Aria-UI在离线和在线代理基准测试中均创下新的最高记录,超越了仅依赖视觉和依赖AXTree的基线。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
先进的多模态理解模型,融合视觉与语言能力。
DeepSeek-VL2是一系列大型Mixture-of-Experts视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等任务上展现出卓越的能力。DeepSeek-VL2包含三个变体:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集和MoE基础模型相比,达到了竞争性或最先进的性能。
前沿级多模态大型语言模型,实现视觉-语言任务的先进性能。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
学习联合视觉表示通过对齐前投影
Video-LLaVA 是一个用于学习联合视觉表示的模型,通过对齐前投影进行训练。它可以将视频和图像表示进行对齐,从而实现更好的视觉理解。该模型具有高效的学习和推理速度,适用于视频处理和视觉任务。
多模态大型语言模型,优化视觉识别和图像推理。
Llama-3.2-90B-Vision是Meta公司发布的一款多模态大型语言模型(LLM),专注于视觉识别、图像推理、图片描述和回答有关图片的一般问题。该模型在常见的行业基准测试中超越了许多现有的开源和封闭的多模态模型。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
© 2025 AIbase 备案号:闽ICP备08105208号-14