需求人群:
"可用于编辑3D场景并向其中插入新的对象"
使用场景示例:
在3D室内场景中插入新的家具装饰
在城市场景中插入新的建筑物或道具
在户外风景中插入新的植物或景物
产品特色:
通过文本提示和2D边界框生成新的3D对象
将生成的2D编辑转换为3D对象模型
在场景中放置和融合生成的3D对象
可进行可选的细化以进一步改善外观
浏览量:114
最新流量情况
月访问量
227
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
44.58%
流量来源
直接访问
33.20%
自然搜索
47.03%
邮件
0.20%
外链引荐
14.00%
社交媒体
3.70%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
日本
100.00%
通过文本生成3D场景中的对象插入
InseRF是一种通过文本提示和2D边界框在NeRF重建的3D场景中生成新对象的方法。它能够从用户提供的文本描述和一个参考视点中的2D边界框中生成新的3D对象,并将其插入到场景中。该方法能够在不需要显式3D信息的情况下实现可控的、与3D一致的对象插入。通过在多个3D场景中进行试验,证明了InseRF方法相对于现有方法的有效性。
实时编辑和完整对象结构生成的3D模型。
Stable Point Aware 3D (SPAR3D) 是 Stability AI 推出的先进3D生成模型。它能够在不到一秒的时间内,从单张图像中实现3D对象的实时编辑和完整结构生成。SPAR3D采用独特的架构,结合精确的点云采样与先进的网格生成技术,为3D资产创建提供了前所未有的控制力。该模型免费提供给商业和非商业用途,可在Hugging Face下载权重,GitHub获取代码,或通过Stability AI开发者平台API访问。
AI 生成定制 3D 模型
3D AI Studio 是一款基于人工智能技术的在线工具,可以轻松生成定制的 3D 模型。适用于设计师、开发者和创意人士,提供高质量的数字资产。用户可以通过AI生成器快速创建3D模型,并以FBX、GLB或USDZ格式导出。3D AI Studio具有高性能、用户友好的界面、自动生成真实纹理等特点,可大幅缩短建模时间和降低成本。
文本引导的高保真3D场景合成
SceneWiz3D是一种新颖的方法,可以从文本中合成高保真的3D场景。它采用混合的3D表示,对对象采用显式表示,对场景采用隐式表示。用户可以通过传统的文本到3D方法或自行提供对象来生成对象。为了配置场景布局并自动放置对象,我们在优化过程中应用了粒子群优化技术。此外,在文本到场景的情况下,对于场景的某些部分(例如角落、遮挡),很难获得多视角监督,导致几何形状劣质。为了缓解这种监督缺失,我们引入了RGBD全景扩散模型作为额外先验,从而实现了高质量的几何形状。广泛的评估支持我们的方法实现了比以前的方法更高的质量,可以生成详细且视角一致的3D场景。
文本到3D沉浸场景生成
Text2Immersion是一个优雅的从文本提示生成高质量3D沉浸场景的方法。我们提出的流水线首先使用预训练的2D扩散和深度估计模型逐步生成高斯云。接下来是对高斯云进行精炼,插值和精炼以增强生成场景的细节。与仅关注单个物体或室内场景,或采用缩小轨迹的主流方法不同,我们的方法可以生成包含各种物体的不同场景,甚至扩展到创造想象中的场景。因此,Text2Immersion可以对各种应用产生广泛的影响,如虚拟现实、游戏开发和自动内容创建。大量的评估证明我们的系统在渲染质量和多样性方面优于其他方法,并且继续推进面向文本的3D场景生成。
稳定扩散:距离快速多样的文本生成3D仅一步之遥
HexaGen3D是一种用于从文本提示生成高质量3D资产的创新方法。它利用大型预训练的2D扩散模型,通过微调预训练的文本到图像模型来联合预测6个正交投影和相应的潜在三面体,然后解码这些潜在值以生成纹理网格。HexaGen3D不需要每个样本的优化,可在7秒内从文本提示中推断出高质量且多样化的对象,相较于现有方法,提供了更好的质量与延迟权衡。此外,HexaGen3D对于新对象或组合具有很强的泛化能力。
快速从单张图片生成3D模型。
Stable Fast 3D (SF3D) 是一个基于TripoSR的大型重建模型,能够从单张物体图片生成带有纹理的UV展开3D网格资产。该模型训练有素,能在不到一秒的时间内创建3D模型,具有较低的多边形计数,并且进行了UV展开和纹理处理,使得模型在下游应用如游戏引擎或渲染工作中更易于使用。此外,模型还能预测每个物体的材料参数(粗糙度、金属感),在渲染过程中增强反射行为。SF3D适用于需要快速3D建模的领域,如游戏开发、电影特效制作等。
腾讯推出的3D生成框架,支持文本和图像到3D的生成。
Hunyuan3D-1是腾讯推出的一个统一框架,用于文本到3D和图像到3D的生成。该框架采用两阶段方法,第一阶段使用多视图扩散模型快速生成多视图RGB图像,第二阶段通过前馈重建模型快速重建3D资产。Hunyuan3D-1.0在速度和质量之间取得了令人印象深刻的平衡,显著减少了生成时间,同时保持了生成资产的质量和多样性。
生成条件文本或图像的 3D 对象
Shap-E 是一个生成条件 3D 隐函数的官方代码和模型发布库。它可以根据文本或图像生成 3D 对象。该产品采用了最新的生成模型,可以根据给定的提示生成与之相关的三维模型。
基于多视图生成重建先验的拖拽式3D编辑工具
MVDrag3D是一个创新的3D编辑框架,它通过利用多视图生成和重建先验来实现灵活且具有创造性的拖拽式3D编辑。该技术的核心是使用多视图扩散模型作为强大的生成先验,以在多个渲染视图中执行一致的拖拽编辑,随后通过重建模型重建编辑对象的3D高斯。MVDrag3D通过视图特定的变形网络调整高斯的位置以实现良好的视图对齐,并提出多视图评分函数以从多个视图中提取生成先验,进一步增强视图一致性和视觉质量。这项技术对于3D建模和设计领域具有重要意义,因为它支持更多样化的编辑效果,并适用于多种对象类别和3D表示。
轻松创建和利用3D内容
3D Creation是一个提供给用户轻松创建和利用3D内容的网站。它提供了多种功能,包括AI纹理、我的模型、API等。用户可以使用AI纹理功能将图片转换为纹理,也可以使用文本转3D功能将文字描述转换为3D模型。此外,用户还可以使用Sketch to 3D功能将手绘草图转换为3D模型。3D Creation适用于各种场景,如设计、图像处理、视频制作等。该产品定位于提供简单易用的3D内容创作工具,并提供合理的定价策略。
一种通过3D感知递归扩散生成3D模型的框架
Ouroboros3D是一个统一的3D生成框架,它将基于扩散的多视图图像生成和3D重建集成到一个递归扩散过程中。该框架通过自条件机制联合训练这两个模块,使它们能够相互适应,以实现鲁棒的推理。在多视图去噪过程中,多视图扩散模型使用由重建模块在前一时间步渲染的3D感知图作为附加条件。递归扩散框架与3D感知反馈相结合,提高了整个过程的几何一致性。实验表明,Ouroboros3D框架在性能上优于将这两个阶段分开训练的方法,以及在推理阶段将它们结合起来的现有方法。
从单张图片生成高质量3D视图和新颖视角的3D生成技术
Stable Video 3D是Stability AI推出的新模型,它在3D技术领域取得了显著进步,与之前发布的Stable Zero123相比,提供了大幅改进的质量和多视角支持。该模型能够在没有相机条件的情况下,基于单张图片输入生成轨道视频,并且能够沿着指定的相机路径创建3D视频。
文字转3D
Luma AI是一款基于人工智能技术的文字转3D工具,通过使用Luma AI,用户可以将文字快速转换成3D模型,并进行编辑和渲染,实现独特的视觉效果。Luma AI具有高效、易用和灵活的特点,适用于各种创意设计、广告制作和数字媒体项目。定价详细请参考官方网站。
高质量3D资产生成技术
Edify 3D是NVIDIA推出的一款AI驱动的3D资产生成技术,它能够在两分钟内生成详细的、生产就绪的3D资产,包括组织良好的UV贴图、4K纹理和PBR材料。这项技术使用多视图扩散模型和基于Transformer的重建,能够从文本提示或参考图像合成高质量的3D资产,实现卓越的效率和可扩展性。Edify 3D对于视频游戏设计、扩展现实、电影制作和仿真等需要严格生产标准的行业至关重要。
将图片轻松转换为3D资产的专业工具
TRELLIS 3D AI是一款利用人工智能技术将图片转换成3D资产的专业工具。它通过结合先进的神经网络和结构化潜在技术(Structured LATents, SLAT),能够保持输入图片的结构完整性和视觉细节,生成高质量的3D资产。产品背景信息显示,TRELLIS 3D AI被全球专业人士信赖,用于可靠的图像到3D资产的转换。与传统的3D建模工具不同,TRELLIS 3D AI提供了一个无需复杂操作的图像到3D资产的转换过程。产品价格为免费,适合需要快速、高效生成3D资产的用户。
编辑3D场景的指令式NeRF编辑器
Instruct-NeRF2NeRF是一款用于编辑NeRF场景的指令式编辑器。它使用图像条件扩散模型(InstructPix2Pix)逐步编辑输入图像,同时优化底层场景,从而得到一个优化的3D场景,该场景符合编辑指令。我们证明了我们的方法能够编辑大规模的现实世界场景,并且能够比之前的工作实现更真实、更有针对性的编辑。
扩展3D场景生成模型
BlockFusion是一种基于扩散的模型,可以生成3D场景,并无缝地将新的块整合到场景中。它通过对随机裁剪自完整3D场景网格的3D块数据集进行训练。通过逐块拟合,所有训练块都被转换为混合神经场:其中包含几何特征的三面体,然后是用于解码有符号距离值的多层感知器(MLP)。变分自动编码器用于将三面体压缩到潜在的三面体空间,对其进行去噪扩散处理。扩散应用于潜在表示,可以实现高质量和多样化的3D场景生成。在生成过程中扩展场景时,只需附加空块以与当前场景重叠,并外推现有的潜在三面体以填充新块。外推是通过在去噪迭代过程中使用来自重叠三面体的特征样本来调节生成过程完成的。潜在三面体外推产生语义和几何上有意义的过渡,与现有场景和谐地融合。使用2D布局调节机制来控制场景元素的放置和排列。实验结果表明,BlockFusion能够生成多样化、几何一致且质量高的室内外大型3D场景。
从多视角图像创建3D场景
CAT3D是一个利用多视角扩散模型从任意数量的输入图像生成新视角的3D场景的网站。它通过一个强大的3D重建管道,将生成的视图转化为可交互渲染的3D表示。整个处理时间(包括视图生成和3D重建)仅需一分钟。
从单一图像或文本生成可探索的3D场景
VividDream是一项创新技术,能够从单一输入图像或文本提示生成具有环境动态的可探索4D场景。它首先将输入图像扩展为静态3D点云,然后使用视频扩散模型生成动画视频集合,并通过优化4D场景表示来实现一致性运动和沉浸式场景探索。这项技术为生成基于多样真实图像和文本提示的引人入胜的4D体验提供了可能。
开源的3D生成模型评价工具
GPTEval3D是一个开源的3D生成模型评价工具,基于GPT-4V实现了对文本到3D生成模型的自动评测。它可以计算生成模型的ELO分数,并与现有模型进行对比排名。该工具简单易用,支持用户自定义评测数据集,可以充分发挥GPT-4V的评测效果,是研究3D生成任务的有力工具。
3D模型查看器,支持在线查看和交互
CSM 3D Viewer是一个在线3D模型查看器,允许用户在网页上查看和交互3D模型。它支持多种3D文件格式,提供了旋转、缩放等基本操作,以及更高级的查看功能。CSM 3D Viewer适用于设计师、工程师和3D爱好者,帮助他们更直观地展示和分享3D作品。
打造引人入胜的3D产品视频
Lumiere 3D是一个强大的在线视频编辑工具,提供优化的3D产品视频,适用于reels、shorts和TikTok等平台。通过定制音乐、摄影角度和场景,轻松展现您的产品优势。立即加入,将您的市场营销创意转化为现实。
高质量文本到3D角色生成
Make-A-Character(Mach)是一个用户友好的框架,旨在从文本描述中创建栩栩如生的3D头像。该框架利用大型语言和视觉模型的力量进行文本意图理解和中间图像生成,然后经过一系列面向人的视觉感知和3D生成模块。我们的系统提供了一种直观的方法,让用户在2分钟内打造可控、逼真、完全实现的3D角色,同时还能轻松与现有的CG流水线进行集成,实现动态表现。
使用AI生成任何3D模型
3D Mesh Generation是Anything World推出的一款在线3D模型生成工具,它利用人工智能技术,允许用户通过简单的文字描述或上传图片来快速生成3D模型。这项技术的重要性在于它极大地简化了3D模型的创建过程,使得没有专业3D建模技能的用户也能轻松创建出高质量的3D内容。产品背景信息显示,Anything World致力于通过其平台提供创新的3D内容创建解决方案,而3D Mesh Generation是其产品线中的重要组成部分。关于价格,用户可以在注册后查看具体的定价方案。
创意3D绘图工具
Draw3D是一款创意3D绘图工具,帮助用户在三维空间中进行绘画和设计。它提供了丰富的绘图功能和工具,使用户可以轻松创建令人惊叹的3D作品。Draw3D具有直观的界面和简单易用的操作,适合初学者和专业设计师使用。它的定价包括基础版和专业版,用户可以根据自己的需求选择合适的版本。
手机上创造惊艳的3D设计
Glyf是一款手机应用,让你可以在几分钟内创建令人惊叹的3D设计。通过Glyf,你可以将文字、图片等转换成精美的3D艺术品,并且利用强大的人工智能功能,通过几句话创造出令人惊艳的AI艺术。Glyf将很快上线于Google Play Store和Apple App Store。
Hunyuan3D 2.0 是腾讯推出的高分辨率 3D 资产生成系统,基于大规模扩散模型。
Hunyuan3D 2.0 是腾讯推出的一种先进大规模 3D 合成系统,专注于生成高分辨率纹理化的 3D 资产。该系统包括两个基础组件:大规模形状生成模型 Hunyuan3D-DiT 和大规模纹理合成模型 Hunyuan3D-Paint。它通过解耦形状和纹理生成的难题,为用户提供了灵活的 3D 资产创作平台。该系统在几何细节、条件对齐、纹理质量等方面超越了现有的开源和闭源模型,具有极高的实用性和创新性。目前,该模型的推理代码和预训练模型已开源,用户可以通过官网或 Hugging Face 空间快速体验。
© 2025 AIbase 备案号:闽ICP备08105208号-14