SeedVR: 一种用于通用视频修复的扩散变换器模型
SeedVR 是一种创新的扩散变换器模型,专门用于处理真实世界中的视频修复任务。该模型通过其独特的移位窗口注意力机制,能够高效地处理任意长度和分辨率的视频序列。SeedVR 的设计使其在生成能力和采样效率方面都取得了显著的提升,相较于传统的扩散模型,它在合成和真实世界的基准测试中均表现出色。此外,SeedVR 还结合了因果视频自编码器、混合图像和视频训练以及渐进式训练等现代实践,进一步提高了其在视频修复领域的竞争力。作为一种前沿的视频修复技术,SeedVR 为视频内容创作者和后期制作人员提供了一种强大的工具,能够显著提升视频质量,尤其是在处理低质量或损坏的视频素材时。
谷歌最新的高性能量子芯片
Willow量子芯片是谷歌量子人工智能团队研发的最新一代量子芯片,它在量子错误校正和性能上取得了重大突破。这款芯片能够显著降低随着量子比特数增加而产生的错误,实现了量子计算领域近30年来追求的关键挑战。此外,Willow在不到五分钟的时间内完成了一项标准基准计算,而这项计算对于当今最快的超级计算机来说需要10^25年,即远远超过宇宙的年龄。这一成就标志着我们向构建具有商业意义的大型量子计算机迈出了重要一步,量子计算机有潜力彻底改变医药、能源和人工智能等领域。
用于生成图像的AI模型,支持多种控制网络
Stable Diffusion 3.5 ControlNets是由Stability AI提供的文本到图像的AI模型,支持多种控制网络(ControlNets),如Canny边缘检测、深度图和高保真上采样等。该模型能够根据文本提示生成高质量的图像,特别适用于插画、建筑渲染和3D资产纹理等场景。它的重要性在于能够提供更精细的图像控制能力,提升生成图像的质量和细节。产品背景信息包括其在学术界的引用(arxiv:2302.05543),以及遵循的Stability Community License。价格方面,对于非商业用途、年收入不超过100万美元的商业用途免费,超过则需联系企业许可。
利用像素空间拉普拉斯扩散模型生成高质量图像
Edify Image是NVIDIA推出的一款图像生成模型,它能够生成具有像素级精确度的逼真图像内容。该模型采用级联像素空间扩散模型,并通过新颖的拉普拉斯扩散过程进行训练,该过程能够在不同频率带以不同的速率衰减图像信号。Edify Image支持多种应用,包括文本到图像合成、4K上采样、ControlNets、360° HDR全景图生成和图像定制微调。它代表了图像生成技术的最新进展,具有广泛的应用前景和重要的商业价值。
3D纹理生成技术,根据文本描述合成3D纹理
TexGen是一个创新的多视角采样和重采样框架,用于根据任意文本描述合成3D纹理。它利用预训练的文本到图像的扩散模型,通过一致性视图采样和注意力引导的多视角采样策略,以及噪声重采样技术,显著提高了3D对象的纹理质量,具有高度的视角一致性和丰富的外观细节。
使用人工智能创作和混音音乐,200,000+样本或自创样本。
TwoShot是一个在线音乐采样平台,提供超过200,000个音乐样本,用户可以重新想象这些样本或生成自己的音乐样本。它允许音乐制作人和爱好者探索和下载各种风格的音乐样本包,从而丰富他们的音乐创作。TwoShot的背景信息包括其创新的音乐采样技术,以及如何帮助用户在音乐制作中获得灵感和便利。
ComfyUI的轨迹一致性蒸馏(TCD)采样插件
这是一款ComfyUI的自定义采样器插件节点,实现了Zheng等人提出的基于轨迹一致性蒸馏(TCD)的采样方法。插件为ComfyUI的Custom Sampler类别增加了TCDScheduler和SamplerTCD节点。只需将其克隆到custom_nodes文件夹中,重启ComfyUI即可使用。TCDScheduler有一个特殊参数eta,用于控制每一步的随机性。当eta=0时表示确定性采样,eta=1时表示完全随机采样。默认值为0.3,但在增加推理步数时建议使用更高的eta值。该插件基于轨迹一致性蒸馏采样方法,可为AI模型提供更加平滑和一致的输出结果。
ComfyUI节点插件,支持3D处理
ComfyUI-3D-Pack是一个强大的3D处理节点插件包,它为ComfyUI提供了处理3D输入(网格、UV纹理等)的能力,使用了最前沿的算法,如3D高斯采样、神经辐射场等。这个项目可以让用户只用单张图片就可以快速生成3D高斯模型,并可以将高斯模型转换成网格,实现3D重建。它还支持多视图图像作为输入,允许在给定的3D网格上映射多视图渲染的纹理贴图。该插件包处于开发中,尚未正式发布到ComfyUI插件库,但已经支持诸如大型多视图高斯模型、三平面高斯变换器、3D高斯采样、深度网格三角剖分、3D文件加载保存等功能。它的目标是成为ComfyUI处理3D内容的强大工具。
端到端MLLM,实现精准引用和定位
ml-ferret是一个端到端的机器学习语言模型(MLLM),能够接受各种形式的引用并响应性地在多模态环境中进行精准定位。它结合了混合区域表示和空间感知的视觉采样器,支持细粒度和开放词汇的引用和定位。此外,ml-ferret还包括GRIT数据集(约110万个样本)和Ferret-Bench评估基准。
高分辨率图像生成的无门槛解决方案
DemoFusion 是一款无需高额费用的高分辨率图像生成解决方案。通过使用渐进式升采样、跳跃残差和扩张采样等机制,DemoFusion 扩展了开源生成人工智能模型,实现了更高分辨率的图像生成。它具有简单易用的特点,无需调整参数和大量内存,适用于广泛的用户群体。DemoFusion 可以与其他基于潜在扩散模型的应用程序无缝集成,实现可控的高分辨率图像生成。
高保真文本到4D生成
4D-fy是一种文本到4D生成方法,通过混合分数蒸馏采样技术,结合了多种预训练扩散模型的监督信号,实现了高保真的文本到4D场景生成。其方法通过神经表示参数化4D辐射场,使用静态和动态多尺度哈希表特征,并利用体积渲染从表示中渲染图像和视频。通过混合分数蒸馏采样,首先使用3D感知文本到图像模型(3D-T2I)的梯度来优化表示,然后结合文本到图像模型(T2I)的梯度来改善外观,最后结合文本到视频模型(T2V)的梯度来增加场景的运动。4D-fy可以生成具有引人入胜外观、3D结构和运动的4D场景。
© 2025 AIbase 备案号:闽ICP备08105208号-14