面向大模型的智能解决方案平台,自动优化多任务。
PromptPilot 是一个智能解决方案平台,专注于大模型的优化和用户任务意图的实现。通过交互反馈,该平台能够自动优化多步骤、多模态和多场景的任务,为用户提供高效的智能解决方案,适合企业和个人用户提升工作效率和任务完成质量。
使用微信聊天记录微调大语言模型,实现高质量声音克隆。
WeClone 是一个基于微信聊天记录微调大语言模型的项目,主要用于实现高质量的声音克隆和数字分身。它结合了微信语音消息和 0.5B 大模型,允许用户通过聊天机器人与自己的数字分身互动。该技术在数字永生和声音克隆领域具有重要的应用价值,可以让用户在不在场的情况下继续与他人交流。此项目正在快速迭代中,适合对 AI 和语言模型感兴趣的用户,且目前处于免费的开发阶段。
Dream 7B 是最强大的开放扩散大语言模型。
Dream 7B 是由香港大学 NLP 组和华为诺亚方舟实验室联合推出的最新扩散大语言模型。它在文本生成领域展现了优异的性能,特别是在复杂推理、长期规划和上下文连贯性等方面。该模型采用了先进的训练方法,具有强大的计划能力和灵活的推理能力,为各类 AI 应用提供了更为强大的支持。
NotaGen 是一个用于符号音乐生成的模型,采用大语言模型训练范式,专注于生成高质量古典乐谱。
NotaGen 是一款创新的符号音乐生成模型,通过预训练、微调和强化学习三个阶段提升音乐生成质量。它利用大语言模型技术,能够生成高质量的古典乐谱,为音乐创作带来新的可能性。该模型的主要优点包括高效生成、风格多样和高质量输出。它适用于音乐创作、教育和研究等领域,具有广泛的应用前景。
Atom of Thoughts (AoT) 是一种用于提升大语言模型推理性能的框架。
Atom of Thoughts (AoT) 是一种新型推理框架,通过将解决方案表示为原子问题的组合,将推理过程转化为马尔可夫过程。该框架通过分解和收缩机制,显著提升了大语言模型在推理任务上的性能,同时减少了计算资源的浪费。AoT 不仅可以作为独立的推理方法,还可以作为现有测试时扩展方法的插件,灵活结合不同方法的优势。该框架开源且基于 Python 实现,适合研究人员和开发者在自然语言处理和大语言模型领域进行实验和应用。
基于大模型 RAG 知识库的知识图谱问答系统,支持多种大模型适配和本地部署。
语析Yuxi-Know 是一个基于大模型 RAG 知识库的知识图谱问答系统,采用 Llamaindex + VueJS + Flask + Neo4j 构建。它支持 OpenAI、国内主流大模型平台的模型调用以及本地 vllm 部署,能够实现知识库问答、知识图谱检索和联网检索等功能。该系统的主要优点是灵活适配多种模型、支持多种知识库格式以及强大的知识图谱集成能力。它适用于需要高效知识管理和智能问答的企业和研究机构,具有较高的技术先进性和实用性。
Spark-TTS 是一种基于大语言模型的高效单流解耦语音合成模型。
Spark-TTS 是一种基于大语言模型的高效文本到语音合成模型,具有单流解耦语音令牌的特性。它利用大语言模型的强大能力,直接从代码预测的音频进行重建,省略了额外的声学特征生成模型,从而提高了效率并降低了复杂性。该模型支持零样本文本到语音合成,能够跨语言和代码切换场景,非常适合需要高自然度和准确性的语音合成应用。它还支持虚拟语音创建,用户可以通过调整参数(如性别、音高和语速)来生成不同的语音。该模型的背景是为了解决传统语音合成系统中效率低下和复杂性高的问题,旨在为研究和生产提供高效、灵活且强大的解决方案。目前,该模型主要面向学术研究和合法应用,如个性化语音合成、辅助技术和语言研究等。
Level-Navi Agent是一个无需训练即可使用的框架,利用大语言模型进行深度查询理解和精准搜索。
Level-Navi Agent是一个开源的通用网络搜索代理框架,能够将复杂问题分解并逐步搜索互联网上的信息,直至回答用户问题。它通过提供Web24数据集,覆盖金融、游戏、体育、电影和事件等五大领域,为评估模型在搜索任务上的表现提供了基准。该框架支持零样本和少样本学习,为大语言模型在中文网络搜索代理领域的应用提供了重要参考。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
TableGPT2-7B 是一款专注于表格数据处理的大语言模型,适用于数据分析和商业智能任务。
TableGPT2-7B 是由浙江大学开发的大规模解码器模型,专门用于处理数据密集型任务,尤其是表格数据的解读和分析。该模型基于 Qwen2.5 架构,通过持续预训练(CPT)和监督微调(SFT)优化,能够处理复杂的表格查询和商业智能(BI)应用。它支持中文查询,适合需要高效处理结构化数据的企业和研究机构。模型目前免费开源,未来可能会推出更专业的版本。
基于支付宝的生活场景,通过领先的大模型技术,为企业快速构建专业级智能体。
Tbox 是一款基于支付宝生活场景的大模型技术产品,旨在为企业快速构建专业级智能体,助力业务增长。它融合了蚂蚁百灵大模型、蚁天鉴、灵境数字人等先进技术,能够实现体验升级、智能决策等功能。Tbox 适用于多种行业,如民生、政务、出行、景区、医疗等,通过智能化服务提升用户体验和业务效率。其价格和具体定位因企业需求而异,为企业提供定制化的解决方案。
MoBA 是一种用于长文本上下文的混合块注意力机制,旨在提升大语言模型的效率。
MoBA(Mixture of Block Attention)是一种创新的注意力机制,专为长文本上下文的大语言模型设计。它通过将上下文划分为块,并让每个查询令牌学习关注最相关的块,从而实现高效的长序列处理。MoBA 的主要优点是能够在全注意力和稀疏注意力之间无缝切换,既保证了性能,又提高了计算效率。该技术适用于需要处理长文本的任务,如文档分析、代码生成等,能够显著降低计算成本,同时保持模型的高性能表现。MoBA 的开源实现为研究人员和开发者提供了强大的工具,推动了大语言模型在长文本处理领域的应用。
月之暗面推出的最新AI模型,支持自动同步更新和大上下文长度,适用于AI聊天和智能助手构建。
kimi-latest 是月之暗面公司推出的最新 AI 模型,与 Kimi 智能助手同步升级,具备强大的上下文处理能力和自动缓存功能,能够有效降低使用成本。该模型支持图像理解和多种功能,如 ToolCalls 和联网搜索,适用于构建 AI 智能助手或客服系统。其价格为每百万 Tokens 1 元,定位为高效、灵活的 AI 模型解决方案。
DMXAPI 是一个提供全球大模型API聚合服务的平台,支持超过300个大模型调用。
DMXAPI 是由 LangChain 中文网提供的大模型API聚合服务,旨在帮助开发者快速接入全球领先的大模型。通过集中采购和直接与模型原厂合作,DMXAPI 提供更具竞争力的价格和高效的服务。其支持的模型包括 GPT-4、Claude、LLaMA 等,覆盖自然语言处理、图像识别、生成式 AI 等多种应用场景。DMXAPI 的主要优点是安全、低价、高效,并提供 7×24 小时在线客服支持,确保用户在使用过程中无后顾之忧。
一款支持多模态功能的全功能大语言模型安卓应用。
MNN 大模型 Android App 是阿里巴巴开发的一款基于大语言模型(LLM)的安卓应用。它支持多种模态输入和输出,包括文本生成、图像识别、音频转录等。该应用通过优化推理性能,确保在移动设备上高效运行,同时保护用户数据隐私,所有处理均在本地完成。它支持多种领先的模型提供商,如 Qwen、Gemma、Llama 等,适用于多种场景。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
GLM-PC是基于CogAgent视觉语言大模型构建的电脑智能体,旨在提升电脑使用体验。
GLM-PC是一款基于CogAgent视觉语言大模型构建的电脑智能体,它通过先进的技术实现对电脑操作的智能化辅助。该产品利用大模型的强大语言理解和生成能力,结合视觉识别技术,为用户提供更高效、更便捷的电脑使用体验。它可以帮助用户快速完成各种复杂的电脑操作,提高工作效率。其主要优点包括高效性、智能化和易用性。该产品主要面向需要提升电脑操作效率的用户,如办公人员、学生等,具有较高的实用价值。目前尚未明确其价格和具体定位。
Doubao-1.5-pro 是一个高性能的稀疏 MoE 大语言模型,专注于推理性能与模型能力的极致平衡。
Doubao-1.5-pro 是由豆包团队开发的高性能稀疏 MoE(Mixture of Experts)大语言模型。该模型通过训练-推理一体化设计,实现了模型性能与推理性能的极致平衡。它在多个公开评测基准上表现出色,尤其在推理效率和多模态能力方面具有显著优势。该模型适用于需要高效推理和多模态交互的场景,如自然语言处理、图像识别和语音交互等。其技术背景基于稀疏激活的 MoE 架构,通过优化激活参数比例和训练算法,实现了比传统稠密模型更高的性能杠杆。此外,该模型还支持动态调整参数,以适应不同的应用场景和成本需求。
© 2025 AIbase 备案号:闽ICP备08105208号-14