需求人群:
"目标受众为AI研究人员和数字病理学领域的学者,他们需要一个强大的模型来分析和理解大量的病理学数据,以推动医学研究和诊断技术的发展。"
使用场景示例:
研究人员使用Prov-GigaPath模型分析病理学数据,发表在Nature期刊上。
医学院校利用该模型进行教学和研究,提高学生对数字病理学的理解。
医院研究人员使用该模型进行病理幻灯片的自动化分析,加快研究进程。
产品特色:
支持在NVIDIA A100 Tensor Core GPU机器上运行。
提供预训练模型和代码的下载。
能够访问HuggingFace Hub上的Prov-GigaPath模型。
包含tile encoder和slide encoder,分别用于提取局部模式和输出幻灯片级别表示。
提供详细的演示笔记本,展示如何运行预训练模型。
提供PCam和PANDA数据集的预提取嵌入,方便进行微调实验。
提供样本数据下载链接,用于进一步的研究和分析。
使用教程:
下载并安装所需的CUDA工具包和Python环境。
从GitHub仓库下载Prov-GigaPath模型和代码。
访问HuggingFace Hub并同意相关条款,获取模型访问权限。
按照提供的指南设置环境变量,以避免访问错误。
运行提供的演示笔记本,了解模型的基本使用方法。
使用tile encoder和slide encoder进行数据的提取和编码。
根据需要对模型进行微调,以适应特定的研究目的。
下载并使用提供的样本数据进行进一步的分析和研究。
浏览量:57
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
全切片基础模型,用于从真实世界数据中进行数字病理学分析。
Prov-GigaPath是一个用于数字病理学研究的全切片基础模型,它通过真实世界数据进行训练,旨在支持AI研究人员在病理学基础模型和数字病理幻灯片数据编码方面的研究。该模型由多位作者共同开发,并在Nature期刊上发表。它不适用于临床护理或任何临床决策制定目的,仅限于研究使用。
MLGym是一个用于推进AI研究代理的新框架和基准。
MLGym是由Meta的GenAI团队和UCSB NLP团队开发的一个开源框架和基准,用于训练和评估AI研究代理。它通过提供多样化的AI研究任务,推动强化学习算法的发展,帮助研究人员在真实世界的研究场景中训练和评估模型。该框架支持多种任务,包括计算机视觉、自然语言处理和强化学习等领域,旨在为AI研究提供一个标准化的测试平台。
为LLM训练和推理生成网站整合文本文件的工具
LLMs.txt生成器是一个由Firecrawl提供支持的在线工具,旨在帮助用户从网站生成用于LLM训练和推理的整合文本文件。它通过整合网页内容,为训练大型语言模型提供高质量的文本数据,从而提高模型的性能和准确性。该工具的主要优点是操作简单、高效,能够快速生成所需的文本文件。它主要面向需要大量文本数据进行模型训练的开发者和研究人员,为他们提供了一种便捷的解决方案。
一个AI驱动的研究系统,可使用多个搜索引擎和LLMs进行综合迭代研究。
Shandu是一个基于AI的研究系统,能够通过多源信息合成和深度迭代探索生成全面的研究报告。它利用先进的语言模型和智能网络爬虫技术,自动完成从问题澄清到内容分析的全过程。其主要优点包括高效的信息整合能力、灵活的多源数据处理以及强大的知识合成能力。该产品适用于需要快速生成高质量研究报告的场景,如学术研究、市场情报分析和技术探索。目前该产品为开源项目,用户可以根据需求进行定制和扩展。
从任何文本中提取知识图谱的人工智能工具。
kg-gen 是一个基于人工智能的工具,能够从普通文本中提取知识图谱。它支持处理小到单句话、大到长篇文档的文本输入,并且可以处理对话格式的消息。该工具利用先进的语言模型和结构化输出技术,能够帮助用户快速构建知识图谱,适用于自然语言处理、知识管理以及模型训练等领域。kg-gen 提供了灵活的接口和多种功能,旨在简化知识图谱的生成过程,提高效率。
Steev 是一款用于优化 AI 模型训练的工具,帮助用户提升训练效率和模型性能。
Steev 是一款专为 AI 模型训练设计的工具,旨在简化训练流程,提升模型性能。它通过自动优化训练参数、实时监控训练过程,并提供代码审查和建议,帮助用户更高效地完成模型训练。Steev 的主要优点是无需配置即可使用,适合希望提高模型训练效率和质量的工程师和研究人员。目前处于免费试用阶段,用户可以免费体验其全部功能。
本地运行的AI模型训练与部署工具,支持个性化训练和多平台使用。
Kolosal AI 是一款用于本地设备训练和运行大型语言模型(LLMs)的工具。它通过简化模型训练、优化和部署流程,使用户能够在本地设备上高效地使用 AI 技术。该工具支持多种硬件平台,提供快速的推理速度和灵活的定制能力,适合从个人开发者到大型企业的广泛应用场景。其开源特性也使得用户可以根据自身需求进行二次开发。
一个专注于整理最佳开源推理数据集的社区项目
Open Thoughts 是一个由 Bespoke Labs 和 DataComp 社区主导的项目,旨在整理高质量的开源推理数据集,用于训练先进的小模型。该项目汇集了来自斯坦福大学、加州大学伯克利分校、华盛顿大学等多所高校和研究机构的研究人员与工程师,致力于通过优质数据集推动推理模型的发展。其背景是当前推理模型在数学和代码推理等领域的应用需求日益增长,而高质量的数据集是提升模型性能的关键。该项目目前免费开放,主要面向研究人员、开发者以及对推理模型感兴趣的专业人士,其数据集和工具的开源性使其成为推动人工智能教育和研究的重要资源。
RWKV家族中最大的模型,采用MoE技术提升效率。
Flock of Finches 37B-A11B v0.1是RWKV家族的最新成员,这是一个实验性模型,拥有11亿个活跃参数,尽管仅训练了1090亿个token,但在常见基准测试中的得分与最近发布的Finch 14B模型大致相当。该模型采用了高效的稀疏混合专家(MoE)方法,在任何给定token上仅激活一部分参数,从而在训练和推理过程中节省时间和减少计算资源的使用。尽管这种架构选择以更高的VRAM使用为代价,但从我们的角度看,能够低成本训练和运行具有更大能力模型是非常值得的。
将各种文件类型转换为Markdown格式的Python库
E2M是一个Python库,能够解析并转换多种文件类型到Markdown格式。它采用了解析器-转换器架构,支持包括doc、docx、epub、html、htm、url、pdf、ppt、pptx、mp3和m4a等多种文件格式的转换。E2M项目的最终目标是为检索增强生成(RAG)和模型训练或微调提供高质量的数据。
3D生成模型,实现高质量多样化的3D资产创建
TRELLIS是一个基于统一结构化潜在表示和修正流变换器的原生3D生成模型,能够实现多样化和高质量的3D资产创建。该模型通过整合稀疏的3D网格和从强大的视觉基础模型提取的密集多视图视觉特征,全面捕获结构(几何)和纹理(外观)信息,同时在解码过程中保持灵活性。TRELLIS模型能够处理高达20亿参数,并在包含50万个多样化对象的大型3D资产数据集上进行训练。该模型在文本或图像条件下生成高质量结果,显著超越现有方法,包括规模相似的最近方法。TRELLIS还展示了灵活的输出格式选择和局部3D编辑能力,这些是以前模型所没有提供的。代码、模型和数据将被发布。
高效全球分布式AI模型训练框架
PrimeIntellect-ai/prime是一个用于在互联网上高效、全球分布式训练AI模型的框架。它通过技术创新,实现了跨地域的AI模型训练,提高了计算资源的利用率,降低了训练成本,对于需要大规模计算资源的AI研究和应用开发具有重要意义。
临床组织病理学成像评估基础模型
CHIEF(Clinical Histopathology Imaging Evaluation Foundation)模型是一个用于癌症诊断和预后预测的病理学基础模型。它通过两种互补的预训练方法提取病理学成像特征,包括无监督预训练用于识别瓦片级别特征和弱监督预训练用于识别整个幻灯片的模式。CHIEF模型使用60,530个全幻灯片图像(WSIs)开发,覆盖19个不同的解剖部位,通过预训练在44TB的高分辨率病理学成像数据集上,提取对癌症细胞检测、肿瘤起源识别、分子档案表征和预后预测有用的微观表示。CHIEF模型在来自24个国际医院和队列的32个独立幻灯片集上的19,491个全幻灯片图像上进行了验证,整体性能超过最先进的深度学习方法高达36.1%,显示出其能够解决不同人群样本和不同幻灯片制备方法中观察到的领域偏移问题。CHIEF为癌症患者的高效数字病理学评估提供了一个可泛化的基础。
AI研究与趋势分析平台
Epoch AI是一个研究人工智能关键趋势和问题的研究机构,旨在塑造AI的轨迹和治理。该机构通过报告、论文、模型和可视化工具,推进基于证据的AI讨论。Epoch AI的工作得到了研究和媒体的信任,为理解AI的发展轨迹提供了重要资源。
多模态大型语言模型的优化与分析
MM1.5是一系列多模态大型语言模型(MLLMs),旨在增强文本丰富的图像理解、视觉指代表明和接地以及多图像推理的能力。该模型基于MM1架构,采用以数据为中心的模型训练方法,系统地探索了整个模型训练生命周期中不同数据混合的影响。MM1.5模型从1B到30B参数不等,包括密集型和混合专家(MoE)变体,并通过广泛的实证研究和消融研究,提供了详细的训练过程和决策见解,为未来MLLM开发研究提供了宝贵的指导。
快速构建端到端的营销活动
Unify Plays是一个商业营销平台,它通过集成AI、自动化和数据验证技术,帮助企业构建和运行能够生成潜在客户并促进销售的营销活动。这个平台的主要优点在于其一体化的解决方案,能够减少企业在营销活动中对多个工具的依赖,提高效率,同时通过AI技术实现个性化营销,提升客户参与度和转化率。Unify Plays的背景信息显示,它是由Unify公司开发,旨在为高增长企业提供一种更高效、更智能的营销方式。关于价格,Unify Plays提供了不同的套餐选项,以满足不同规模企业的需求。
一种用于文本到图像扩散模型的概念擦除技术
RECE是一种文本到图像扩散模型的概念擦除技术,它通过在模型训练过程中引入正则化项来实现对特定概念的可靠和高效擦除。这项技术对于提高图像生成模型的安全性和控制性具有重要意义,特别是在需要避免生成不适当内容的场景中。RECE技术的主要优点包括高效率、高可靠性和易于集成到现有模型中。
简洁的FLUX LoRA训练UI,支持低VRAM配置。
Flux Gym是一个为FLUX LoRA模型训练设计的简洁Web UI,特别适合只有12GB、16GB或20GB VRAM的设备使用。它结合了AI-Toolkit项目的易用性和Kohya Scripts的灵活性,使得用户无需复杂的终端操作即可进行模型训练。Flux Gym支持用户通过简单的界面上传图片和添加描述,然后启动训练过程。
在东京构建世界级AI研究实验室
Sakana AI是一家位于日本东京的AI研究实验室,专注于创建基于自然启发智能的新类型基础模型。该实验室致力于开发先进的人工智能技术,以模拟自然界中的智能行为,推动AI领域的创新和发展。
本地部署的AI语音工具箱,支持语音识别、转录和转换。
Easy Voice Toolkit是一个基于开源语音项目的AI语音工具箱,提供包括语音模型训练在内的多种自动化音频工具。该工具箱能够无缝集成,形成完整的工作流程,用户可以根据需要选择性使用这些工具,或按顺序使用,逐步将原始音频文件转换为理想的语音模型。
AI艺术创作与模型分享平台
Civita Green是一个面向AI爱好者、艺术家和开发者的社区平台,提供AI模型训练、图像和视频创作、以及艺术作品分享。平台支持用户创建、分享和使用各种AI模型,推动AI艺术创作的发展。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
AI驱动的研究和报告工具
Profundo是一个AI驱动的研究和报告工具,旨在帮助用户自动化数据收集、分析和报告过程,以便用户可以专注于学习和决策制定。它使用尖端的AI技术,提高了数据收集和报告的效率,同时确保了研究的高准确性。Profundo的用户友好界面设计考虑了用户的需求,易于导航,并能与现有工具无缝集成。
AI脚本集合,主要用于Stable Diffusion模型。
ai-toolkit是一个研究性质的GitHub仓库,由Ostris创建,主要用于Stable Diffusion模型的实验和训练。它包含了各种AI脚本,支持模型训练、图像生成、LoRA提取器等。该工具包仍在开发中,可能存在不稳定性,但提供了丰富的功能和高度的自定义性。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
AI数学奥林匹克解决方案
这个GitHub仓库包含了训练和推理代码,用于复制我们在AI数学奥林匹克(AIMO)进展奖1中的获胜解决方案。我们的解决方案由四个主要部分组成:一个用于微调DeepSeekMath-Base 7B以使用工具集成推理(TIR)解决数学问题的配方;两个约100万个数学问题和解决方案的高质量训练数据集;一个自洽解码算法,用于生成具有代码执行反馈的解决方案候选项(SC-TIR);四个来自AMC、AIME和MATH的精心选择的验证集,以指导模型选择并避免对公共排行榜的过拟合。
大规模城市环境中的机器人模拟交互平台。
GRUtopia是一个为各种机器人设计的交互式3D社会模拟平台,它通过模拟到现实(Sim2Real)的范式,为机器人学习提供了一个可行的路径。平台包含100k精细标注的交互场景,可以自由组合成城市规模的环境,覆盖89种不同的场景类别,为服务导向环境中通用机器人的部署提供了基础。此外,GRUtopia还包括一个由大型语言模型(LLM)驱动的NPC系统,负责社交互动、任务生成和分配,模拟了具身AI应用的社交场景。
构建和训练大型语言模型的综合框架
DataComp-LM (DCLM) 是一个为构建和训练大型语言模型(LLMs)而设计的综合性框架,提供了标准化的语料库、基于open_lm框架的高效预训练配方,以及超过50种评估方法。DCLM 支持研究人员在不同的计算规模上实验不同的数据集构建策略,从411M到7B参数模型。DCLM 通过优化的数据集设计显著提高了模型性能,并且已经促成了多个高质量数据集的创建,这些数据集在不同规模上表现优异,超越了所有开放数据集。
© 2025 AIbase 备案号:闽ICP备08105208号-14