需求人群:
"目标受众为AI研究人员和数字病理学领域的学者,他们需要一个强大的模型来分析和理解大量的病理学数据,以推动医学研究和诊断技术的发展。"
使用场景示例:
研究人员使用Prov-GigaPath模型分析病理学数据,发表在Nature期刊上。
医学院校利用该模型进行教学和研究,提高学生对数字病理学的理解。
医院研究人员使用该模型进行病理幻灯片的自动化分析,加快研究进程。
产品特色:
支持在NVIDIA A100 Tensor Core GPU机器上运行。
提供预训练模型和代码的下载。
能够访问HuggingFace Hub上的Prov-GigaPath模型。
包含tile encoder和slide encoder,分别用于提取局部模式和输出幻灯片级别表示。
提供详细的演示笔记本,展示如何运行预训练模型。
提供PCam和PANDA数据集的预提取嵌入,方便进行微调实验。
提供样本数据下载链接,用于进一步的研究和分析。
使用教程:
下载并安装所需的CUDA工具包和Python环境。
从GitHub仓库下载Prov-GigaPath模型和代码。
访问HuggingFace Hub并同意相关条款,获取模型访问权限。
按照提供的指南设置环境变量,以避免访问错误。
运行提供的演示笔记本,了解模型的基本使用方法。
使用tile encoder和slide encoder进行数据的提取和编码。
根据需要对模型进行微调,以适应特定的研究目的。
下载并使用提供的样本数据进行进一步的分析和研究。
浏览量:24
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
全切片基础模型,用于从真实世界数据中进行数字病理学分析。
Prov-GigaPath是一个用于数字病理学研究的全切片基础模型,它通过真实世界数据进行训练,旨在支持AI研究人员在病理学基础模型和数字病理幻灯片数据编码方面的研究。该模型由多位作者共同开发,并在Nature期刊上发表。它不适用于临床护理或任何临床决策制定目的,仅限于研究使用。
AI研究与趋势分析平台
Epoch AI是一个研究人工智能关键趋势和问题的研究机构,旨在塑造AI的轨迹和治理。该机构通过报告、论文、模型和可视化工具,推进基于证据的AI讨论。Epoch AI的工作得到了研究和媒体的信任,为理解AI的发展轨迹提供了重要资源。
多模态大型语言模型的优化与分析
MM1.5是一系列多模态大型语言模型(MLLMs),旨在增强文本丰富的图像理解、视觉指代表明和接地以及多图像推理的能力。该模型基于MM1架构,采用以数据为中心的模型训练方法,系统地探索了整个模型训练生命周期中不同数据混合的影响。MM1.5模型从1B到30B参数不等,包括密集型和混合专家(MoE)变体,并通过广泛的实证研究和消融研究,提供了详细的训练过程和决策见解,为未来MLLM开发研究提供了宝贵的指导。
快速构建端到端的营销活动
Unify Plays是一个商业营销平台,它通过集成AI、自动化和数据验证技术,帮助企业构建和运行能够生成潜在客户并促进销售的营销活动。这个平台的主要优点在于其一体化的解决方案,能够减少企业在营销活动中对多个工具的依赖,提高效率,同时通过AI技术实现个性化营销,提升客户参与度和转化率。Unify Plays的背景信息显示,它是由Unify公司开发,旨在为高增长企业提供一种更高效、更智能的营销方式。关于价格,Unify Plays提供了不同的套餐选项,以满足不同规模企业的需求。
一种用于文本到图像扩散模型的概念擦除技术
RECE是一种文本到图像扩散模型的概念擦除技术,它通过在模型训练过程中引入正则化项来实现对特定概念的可靠和高效擦除。这项技术对于提高图像生成模型的安全性和控制性具有重要意义,特别是在需要避免生成不适当内容的场景中。RECE技术的主要优点包括高效率、高可靠性和易于集成到现有模型中。
简洁的FLUX LoRA训练UI,支持低VRAM配置。
Flux Gym是一个为FLUX LoRA模型训练设计的简洁Web UI,特别适合只有12GB、16GB或20GB VRAM的设备使用。它结合了AI-Toolkit项目的易用性和Kohya Scripts的灵活性,使得用户无需复杂的终端操作即可进行模型训练。Flux Gym支持用户通过简单的界面上传图片和添加描述,然后启动训练过程。
在东京构建世界级AI研究实验室
Sakana AI是一家位于日本东京的AI研究实验室,专注于创建基于自然启发智能的新类型基础模型。该实验室致力于开发先进的人工智能技术,以模拟自然界中的智能行为,推动AI领域的创新和发展。
本地部署的AI语音工具箱,支持语音识别、转录和转换。
Easy Voice Toolkit是一个基于开源语音项目的AI语音工具箱,提供包括语音模型训练在内的多种自动化音频工具。该工具箱能够无缝集成,形成完整的工作流程,用户可以根据需要选择性使用这些工具,或按顺序使用,逐步将原始音频文件转换为理想的语音模型。
AI艺术创作与模型分享平台
Civita Green是一个面向AI爱好者、艺术家和开发者的社区平台,提供AI模型训练、图像和视频创作、以及艺术作品分享。平台支持用户创建、分享和使用各种AI模型,推动AI艺术创作的发展。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
AI驱动的研究和报告工具
Profundo是一个AI驱动的研究和报告工具,旨在帮助用户自动化数据收集、分析和报告过程,以便用户可以专注于学习和决策制定。它使用尖端的AI技术,提高了数据收集和报告的效率,同时确保了研究的高准确性。Profundo的用户友好界面设计考虑了用户的需求,易于导航,并能与现有工具无缝集成。
AI脚本集合,主要用于Stable Diffusion模型。
ai-toolkit是一个研究性质的GitHub仓库,由Ostris创建,主要用于Stable Diffusion模型的实验和训练。它包含了各种AI脚本,支持模型训练、图像生成、LoRA提取器等。该工具包仍在开发中,可能存在不稳定性,但提供了丰富的功能和高度的自定义性。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
AI数学奥林匹克解决方案
这个GitHub仓库包含了训练和推理代码,用于复制我们在AI数学奥林匹克(AIMO)进展奖1中的获胜解决方案。我们的解决方案由四个主要部分组成:一个用于微调DeepSeekMath-Base 7B以使用工具集成推理(TIR)解决数学问题的配方;两个约100万个数学问题和解决方案的高质量训练数据集;一个自洽解码算法,用于生成具有代码执行反馈的解决方案候选项(SC-TIR);四个来自AMC、AIME和MATH的精心选择的验证集,以指导模型选择并避免对公共排行榜的过拟合。
大规模城市环境中的机器人模拟交互平台。
GRUtopia是一个为各种机器人设计的交互式3D社会模拟平台,它通过模拟到现实(Sim2Real)的范式,为机器人学习提供了一个可行的路径。平台包含100k精细标注的交互场景,可以自由组合成城市规模的环境,覆盖89种不同的场景类别,为服务导向环境中通用机器人的部署提供了基础。此外,GRUtopia还包括一个由大型语言模型(LLM)驱动的NPC系统,负责社交互动、任务生成和分配,模拟了具身AI应用的社交场景。
构建和训练大型语言模型的综合框架
DataComp-LM (DCLM) 是一个为构建和训练大型语言模型(LLMs)而设计的综合性框架,提供了标准化的语料库、基于open_lm框架的高效预训练配方,以及超过50种评估方法。DCLM 支持研究人员在不同的计算规模上实验不同的数据集构建策略,从411M到7B参数模型。DCLM 通过优化的数据集设计显著提高了模型性能,并且已经促成了多个高质量数据集的创建,这些数据集在不同规模上表现优异,超越了所有开放数据集。
AI开发规模化的民主化平台
Prime Intellect是一个致力于AI开发规模化民主化的平台,提供全球计算资源的发现、模型训练以及共同拥有智能创新的能力。它通过分布式训练跨集群,使得用户能够训练最前沿的模型,并且共同拥有由此产生的开放AI创新成果,包括语言模型和科学突破。
编码器自由的视觉-语言模型,高效且数据驱动。
EVE是一个编码器自由的视觉-语言模型,由大连理工大学、北京人工智能研究院和北京大学的研究人员共同开发。它在不同图像宽高比下展现出卓越的能力,性能超越了Fuyu-8B,并且接近模块化编码器基础的LVLMs。EVE在数据效率、训练效率方面表现突出,使用33M公开数据进行预训练,并利用665K LLaVA SFT数据为EVE-7B模型训练,以及额外的1.2M SFT数据为EVE-7B (HD)模型训练。EVE的开发采用了高效、透明、实用的策略,为跨模态的纯解码器架构开辟了新途径。
AI助力的快速洞察和全面研究助手
GPT Researcher是一个领先的自主研究代理,专为多代理框架设计,提供实时、准确和事实性的结果。它能够简化数据收集,通过一个函数调用提供可信赖、聚合和策划的结果。它支持超过100种不同的大型语言模型(LLMs),并且可以与任何搜索引擎协作,从Google到DuckDuckGo。用户可以轻松搜索本地文档和文件,并生成超过2000字的长篇报告,支持多种格式的导出,如PDF、Word、Markdown、JSON和CSV。
CoreNet 是一个用于训练深度神经网络的库。
CoreNet 是一个深度神经网络工具包,使研究人员和工程师能够训练标准和新颖的小型和大型规模模型,用于各种任务,包括基础模型(例如 CLIP 和 LLM)、对象分类、对象检测和语义分割。
精准控制文本生成视频的相机姿态
CameraCtrl 致力于为文本生成视频模型提供精准相机姿态控制,通过训练相机编码器实现参数化相机轨迹,从而实现视频生成过程中的相机控制。产品通过综合研究各种数据集的效果,证明视频具有多样的相机分布和相似外观可以增强可控性和泛化能力。实验证明 CameraCtrl 在实现精确、领域自适应的相机控制方面非常有效,是从文本和相机姿态输入实现动态、定制视频叙事的重要进展。
SceneScript:通过Reality Labs研究实现3D场景重建
SceneScript是Reality Labs研究团队开发的一种新型3D场景重建技术。该技术利用AI来理解和重建复杂的3D场景,能够从单张图片中创建详细的3D模型。SceneScript通过结合多种先进的深度学习技术,如半监督学习、自监督学习和多模态学习,显著提高了3D重建的准确性和效率。
MNBVC是一个超大规模的中文语料集,对标chatGPT训练的40T数据
MNBVC(Massive Never-ending BT Vast Chinese corpus)是一个旨在为AI提供丰富中文语料的项目。它不仅包括主流文化内容,还涵盖了小众文化和网络用语。数据集包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等多种形式的纯文本中文数据。
生成合成数据,训练和对齐模型的工具
DataDreamer是一个强大的开源Python库,用于提示、生成合成数据和训练工作流。它旨在简单易用,极其高效,且具有研究级质量。DataDreamer支持创建提示工作流、生成合成数据集、对齐模型、微调模型、指令调优模型和模型蒸馏。它具有简单、研究级、高效、可复现的特点,并简化了数据集和模型的共享。
先进机器智能的下一步
Meta 发布了 Video Joint Embedding Predictive Architecture (V-JEPA) 模型,这是推进机器智能的关键一步,带来对世界更具实地认识。
StemGen: 一款聆听音乐生成模型
StemGen是一款端到端音乐生成模型,训练成能够聆听音乐背景并做出适当回应的模型。它建立在非自回归语言模型类型的架构上,类似于SoundStorm和VampNet。更多细节请参阅论文。该页面展示了该架构模型的多个示例输出。
统一的深度学习训练框架
AXLearn是Apple基于JAX和XLA构建的深度学习库,采用面向对象的方式解决软件工程在大规模深度学习模型开发中的挑战。它的配置系统允许用户从可重用的构建块中组合模型,并与其他库(如Flax和Hugging Face transformers)集成。AXLearn旨在扩展训练规模,支持数百亿参数的模型在数千个加速器上高效训练,适合在公有云上部署。它还采用全局计算范式,允许用户描述全局虚拟计算机上的计算,而不是单个加速器。AXLearn支持广泛的应用,包括自然语言处理、计算机视觉和语音识别,并包含用于训练最先进模型的基线配置。
© 2024 AIbase 备案号:闽ICP备08105208号-14