需求人群:
"适用于个人和小企业轻松快速制作推广视频,同时让有创意但缺乏制作技能的创意者实现其视频创意。"
使用场景示例:
品牌通过数字人讲述品牌故事,增强品牌情感连接,提升客户忠诚度
商家在节日期间使用数字人进行促销活动宣传,吸引消费者关注和购买
旅游公司利用数字人介绍旅游路线和景点,吸引游客预订旅游服务
产品特色:
只需导入30秒视频,即可一键免费克隆形象和声音。
轻松打字,口播短视频即可制作完成。
只需要上传一张照片,便可开口说话。
浏览量:3545
最新流量情况
月访问量
24.96k
平均访问时长
00:03:20
每次访问页数
3.68
跳出率
42.42%
流量来源
直接访问
48.06%
自然搜索
29.29%
邮件
0.02%
外链引荐
21.43%
社交媒体
1.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
76.10%
马来西亚
2.22%
新加坡
2.48%
美国
9.72%
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
国内领先的AI数字人口播视频在线创作平台
闪剪是一款 AI 数字人视频生成工具,用户可以定制自己的数字人,只需输入文字即可生成口播视频。 闪剪具备形象、声音克隆;链接成片以及直播切片等功能,手机端和网页端通用。
生成视频的模型,根据文本生成真实感视频。
Phenaki是一个可以根据一系列文本提示生成逼真视频的模型。它通过将视频压缩为离散令牌的小表示来学习视频表达。模型使用时间上的因果注意力来生成视频令牌,并根据预先计算的文本令牌来条件生成视频。与之前的视频生成方法相比,Phenaki可以根据一系列提示(例如时间可变的文本或故事)生成任意长的视频。它的定位是在开放领域中生成视频。该模型还具有超出现有视频数据集范围的泛化能力。为了更好地满足用户需求,Phenaki还提供了交互式示例和其他应用场景。
AI视频生成平台
Synthesia是一款AI视频生成平台,可以帮助用户在超过120种语言中创建专业的视频,无需麦克风、摄像头或演员。它提供了AI化身和语音合成功能,用户可以通过简单的操作创建高质量的视频内容。Synthesia适用于各种场景,包括广告制作、教育培训、视频营销等。平台提供灵活的定价方案,用户可以根据自己的需求选择适合的套餐。
音频驱动的表情丰富的视频生成模型
MEMO是一个先进的开放权重模型,用于音频驱动的说话视频生成。该模型通过记忆引导的时间模块和情感感知的音频模块,增强了长期身份一致性和运动平滑性,同时通过检测音频中的情感来细化面部表情,生成身份一致且富有表情的说话视频。MEMO的主要优点包括更真实的视频生成、更好的音频-唇形同步、身份一致性和表情情感对齐。该技术背景信息显示,MEMO在多种图像和音频类型中生成更真实的说话视频,超越了现有的最先进方法。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
灵感激发与视频创作平台
跃问视频是一个集灵感激发与视频创作于一体的平台,它通过提供丰富的视觉和创意内容,帮助用户激发创意并创作出独特的视频。该平台以其独特的美学风格和高效的视频生成技术为主要优点,尤其在中国风题材上表现出色。跃问视频的背景信息显示,它是由阶跃星辰公司推出的,该公司在多模态能力方面遥遥领先,提供了从文本到视频的生成技术。产品定位于中高端市场,以其高质量的视频生成和优化服务吸引用户。
基于扩散模型的2D视频生成系统,实现人-物交互动画。
AnchorCrafter是一个创新的扩散模型系统,旨在生成包含目标人物和定制化对象的2D视频,通过人-物交互(HOI)的集成,实现高视觉保真度和可控交互。该系统通过HOI-外观感知增强从任意多视角识别对象外观的能力,并分离人和物的外观;HOI-运动注入则通过克服对象轨迹条件和相互遮挡管理的挑战,实现复杂的人-物交互。此外,HOI区域重新加权损失作为训练目标,增强了对对象细节的学习。该技术在保持对象外观和形状意识的同时,也维持了人物外观和运动的一致性,对于在线商务、广告和消费者参与等领域具有重要意义。
基于频率分解的身份保持文本到视频生成模型
ConsisID是一个基于频率分解的身份保持文本到视频生成模型,它通过在频域中使用身份控制信号来生成与输入文本描述一致的高保真度视频。该模型不需要针对不同案例进行繁琐的微调,并且能够保持生成视频中人物身份的一致性。ConsisID的提出,推动了视频生成技术的发展,特别是在无需调整的流程和频率感知的身份保持控制方案方面。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
视频生成模型Sora的存档库
SoraVids是一个基于Hugging Face平台的视频生成模型Sora的存档库。它包含了87个视频和83个对应的提示,这些视频和提示在OpenAI撤销API密钥前被公开展示。这些视频均为MIME类型video/mp4,帧率为30 FPS。SoraVids的背景是OpenAI的视频生成技术,它允许用户通过文本提示生成视频内容。这个存档库的重要性在于它保存了在API密钥被撤销前生成的视频,为研究和教育提供了宝贵的资源。
基于DiT的视频生成模型,实时生成高质量视频。
LTX-Video是由Lightricks开发的首个基于DiT的视频生成模型,能够实时生成高质量的视频内容。该模型以24 FPS的速度生成768x512分辨率的视频,速度超过观看速度。模型经过大规模多样化视频数据集的训练,能够生成高分辨率且内容真实多样的视频。LTX-Video支持文本到视频(text-to-video)以及图像+文本到视频(image+text-to-video)的应用场景。
实时AI视频生成开源模型
LTXV是Lightricks推出的一个实时AI视频生成开源模型,它代表了视频生成技术的最新发展。LTXV能够提供可扩展的长视频制作能力,优化了GPU和TPU系统,大幅减少了视频生成时间,同时保持了高视觉质量。LTXV的独特之处在于其帧到帧学习技术,确保了帧之间的连贯性,消除了闪烁和场景内的不一致问题。这一技术对于视频制作行业来说是一个巨大的进步,因为它不仅提高了效率,还提升了视频内容的质量。
统一可控的视频生成方法
AnimateAnything是一个统一的可控视频生成方法,它支持在不同条件下进行精确和一致的视频操作,包括相机轨迹、文本提示和用户动作注释。该技术通过设计多尺度控制特征融合网络来构建不同条件下的通用运动表示,并将所有控制信息转换为逐帧光流,以此作为运动先导来指导视频生成。此外,为了减少大规模运动引起的闪烁问题,提出了基于频率的稳定模块,以确保视频在频域的一致性,增强时间连贯性。实验表明,AnimateAnything的方法优于现有的最先进方法。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
将图像和文本转换成短视频的AI驱动平台
img2video是一个利用先进AI技术将静态图像和文本转换成短视频的平台,特别适合社交媒体内容创作。它通过简化视频创作流程,使得用户能够轻松创建引人注目的视频内容,提升内容的吸引力和传播力。该产品背景信息显示,它适用于多种视频创作场景,如产品展示、舞蹈视频、旧照片动画等,并且提供了多种视频生成选项,满足不同用户的需求。价格方面,虽然页面上没有明确说明,但提到了'定价'页面,可能意味着有付费服务。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
用户视频的生成性视频摄像机控制
ReCapture是一种从单一用户提供的视频生成新视频和新颖摄像机轨迹的方法。该技术允许我们从完全不同的角度重新生成源视频,并带有电影级别的摄像机运动。ReCapture通过使用多视图扩散模型或基于深度的点云渲染生成带有新摄像机轨迹的嘈杂锚视频,然后通过我们提出的掩蔽视频微调技术将锚视频重新生成为干净且时间上一致的重新角度视频。这种技术的重要性在于它能够利用视频模型的强大先验,将近似的视频重新生成为时间上一致且美观的视频。
高度表现力的肖像动画技术
字节跳动智能创作团队推出最新单图视频驱动技术 X-Portrait 2。X-Portrait 2是一种肖像动画技术,它通过用户提供的静态肖像图像和驱动表演视频,能够生成具有高度表现力和真实感的角色动画和视频片段。这项技术显著降低了现有的动作捕捉、角色动画和内容创作流程的复杂性。X-Portrait 2通过构建一个最先进的表情编码器模型,隐式编码输入中的每一个微小表情,并通过大规模数据集进行训练。然后,该编码器与强大的生成扩散模型结合,生成流畅且富有表现力的视频。X-Portrait 2能够传递微妙和微小的面部表情,包括撅嘴、吐舌、脸颊充气和皱眉等具有挑战性的表情,并在生成的视频中实现高保真的情感传递。
ComfyUI中集成的最新视频生成模型
Mochi是Genmo最新推出的开源视频生成模型,它在ComfyUI中经过优化,即使使用消费级GPU也能实现。Mochi以其高保真度动作和卓越的提示遵循性而著称,为ComfyUI社区带来了最先进的视频生成能力。Mochi模型在Apache 2.0许可下发布,这意味着开发者和创作者可以自由使用、修改和集成Mochi,而不受限制性许可的阻碍。Mochi能够在消费级GPU上运行,如4090,且在ComfyUI中支持多种注意力后端,使其能够适应小于24GB的VRAM。
生成和交互控制开放世界游戏视频的扩散变换模型
GameGen-X是专为生成和交互控制开放世界游戏视频而设计的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样事件,实现了高质量、开放领域的视频生成。此外,它还提供了交互控制能力,能够根据当前视频片段预测和改变未来内容,从而实现游戏玩法模拟。为了实现这一愿景,我们首先从零开始收集并构建了一个开放世界视频游戏数据集(OGameData),这是第一个也是最大的开放世界游戏视频生成和控制数据集,包含超过150款游戏的100多万个多样化游戏视频片段,这些片段都配有GPT-4o的信息性字幕。GameGen-X经历了两阶段的训练过程,包括基础模型预训练和指令调优。首先,模型通过文本到视频生成和视频续集进行预训练,赋予了其长序列、高质量开放领域游戏视频生成的能力。进一步,为了实现交互控制能力,我们设计了InstructNet来整合与游戏相关的多模态控制信号专家。这使得模型能够根据用户输入调整潜在表示,首次在视频生成中统一角色交互和场景内容控制。在指令调优期间,只有InstructNet被更新,而预训练的基础模型被冻结,使得交互控制能力的整合不会损失生成视频内容的多样性和质量。GameGen-X代表了使用生成模型进行开放世界视频游戏设计的一次重大飞跃。它展示了生成模型作为传统渲染技术的辅助工具的潜力,有效地将创造性生成与交互能力结合起来。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
首款实时生成式AI开放世界模型
Decart是一个高效的AI平台,提供了在训练和推理大型生成模型方面的数量级改进。利用这些先进的能力,Decart能够训练基础的生成交互模型,并使每个人都能在实时中访问。Decart的OASIS模型是一个实时生成的AI开放世界模型,代表了实时视频生成的未来。该平台还提供了对1000+ NVIDIA H100 Tensor Core GPU集群进行训练或推理的能力,为AI视频生成领域带来了突破性进展。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
Mochi视频生成器的ComfyUI包装节点
ComfyUI-MochiWrapper是一个用于Mochi视频生成器的包装节点,它允许用户通过ComfyUI界面与Mochi模型进行交互。这个项目主要优点是能够利用Mochi模型生成视频内容,并且通过ComfyUI简化了操作流程。它是基于Python开发的,并且完全开源,允许开发者自由地使用和修改。目前该项目还处于积极开发中,已经有一些基本功能,但还没有正式发布版本。
© 2024 AIbase 备案号:闽ICP备08105208号-14