需求人群:
"prism-alignment 数据集的目标受众主要是自然语言处理、人工智能和社会科学领域的研究人员和学生。它适合那些对探索和改进 AI 价值观对齐、进行跨文化研究或开发更符合人类价值观的对话代理感兴趣的用户。"
使用场景示例:
研究人员使用 prism-alignment 数据集来分析不同文化背景下人们对 AI 行为的偏好。
学生利用该数据集进行课程项目,探索 AI 伦理和价值观问题。
开发者利用数据集中的反馈来训练和优化对话系统,使其更加符合用户的期望和价值观。
产品特色:
包含多种模态,如表格和文本,以及多种格式,如 JSON。
涵盖英语语言数据,大小在10M至100M之间。
数据集带有详细的标签,如对齐、人类反馈、偏好、AI 安全等。
支持使用 pandas 和 mlcroissant 等库进行数据处理。
遵循 Creative Commons 许可协议,鼓励研究和教育使用。
数据集经过伦理审查,并由多方资助和支持。
使用教程:
第一步:访问 Hugging Face 上的 prism-alignment 数据集页面。
第二步:下载数据集,根据需要选择合适的格式和子集。
第三步:使用 pandas 或 mlcroissant 等库对数据进行加载和初步探索。
第四步:根据研究目的,筛选和分析数据集中的相关变量。
第五步:利用数据集中的反馈信息来指导 AI 模型的训练和优化。
第六步:在研究或项目中应用所得结论,改进 AI 的价值观对齐。
第七步:遵循数据集的使用协议,正确引用数据集来源。
浏览量:23
最新流量情况
月访问量
25537.07k
平均访问时长
00:04:47
每次访问页数
5.87
跳出率
44.24%
流量来源
直接访问
48.78%
自然搜索
35.41%
邮件
0.03%
外链引荐
12.86%
社交媒体
2.83%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
16.45%
德国
3.44%
印度
9.03%
俄罗斯
5.18%
美国
16.86%
探索大型语言模型的偏好和价值观对齐。
prism-alignment 是一个由 HannahRoseKirk 创建的数据集,专注于研究大型语言模型(LLMs)的偏好和价值观对齐问题。数据集通过调查问卷和与语言模型的多轮对话,收集了来自不同国家和文化背景的参与者对模型回答的评分和反馈。这些数据对于理解和改进人工智能的价值观对齐至关重要。
连接具有共同价值观的职业人士
INOP是一个影响力驱动的专业网络平台。通过我们先进的AI匹配算法,您可以与与您的影响力驱动心态和职业志向相契合的专业人士建立联系,更容易建立有意义的关系和追求有影响力的职业生涯。利用我们的个性化工作提醒功能,了解最新的职位机会,并利用地理定位功能找到您附近的有趣机会。使用INOP,您可以根据您的核心价值观、信念和兴趣连接到真正与您相关的专业人士和职业机会。
智能助手帮助发现和完善公司核心价值观
Company Values Generator是一个在线工具,它通过分析公司网站来建议与公司使命相符的核心价值观。这个工具通过交互式过程帮助团队精炼这些建议,直到找到最适合团队的完美价值观集合。产品背景信息显示,FidForward致力于通过日常反馈和检查将价值观融入日常工作中,帮助团队理解如何在日常工作中体现这些价值观,并跟踪它们的有效性。产品定位于帮助企业建立和维护其核心价值观,这对于企业文化和团队指导至关重要。
使用语言模型引导任务规范的学习框架
GATE是一种学习框架,通过与用户进行自由形式的基于语言的交互,使用语言模型引导任务规范和推断预期行为。它在电子邮件验证、内容推荐和道德推理三个领域进行了研究。在预注册实验中,我们发现,通过生成开放式问题或合成信息丰富的边界案例等方式,提示GATE执行的语言模型往往比用户编写的提示或标签更具信息量。用户报告称,与提示或示例标记相比,交互式任务引导需要更少的工作量,并提供了用户最初没有预料到的新颖考虑因素。我们的研究结果表明,基于语言模型的引导可以成为将模型与复杂人类偏好和价值观相一致的强大工具。
基于用户反馈的 LLM 模型对齐技术
C3PO 是一种基于用户反馈的 LLM 模型对齐技术,可以从单个反馈句子中对 LLM 进行调整,避免过度概括化。该技术提供了参考实现、相关基准线和必要组件,方便研究论文中提出的技术。
70亿参数的大型多语言对话生成模型
Meta Llama 3.1是Meta公司推出的一种大型语言模型,拥有70亿参数,支持8种语言的文本生成和对话。该模型使用优化的Transformer架构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。它旨在为商业和研究用途提供支持,特别是在多语言对话场景下表现出色。
深入研究大型语言模型的内部一致性和自我反馈
ICSFSurvey是一个关于大型语言模型内部一致性和自我反馈的调查研究。它提供了对LLMs自我评估和自我更新机制的统一视角,包括理论框架、系统分类、评估方法、未来研究方向等。
高效为大型语言模型提供服务
FP6-LLM是一种用于大型语言模型的全新支持方案,通过六位量化(FP6)有效地减小了模型大小,并在各种应用中始终保持模型质量。我们提出了TC-FPx,这是第一个完整的GPU内核设计方案,统一支持各种量化位宽的浮点权重。我们将TC-FPx内核集成到现有推理系统中,为量化的LLM推理提供了全新的端到端支持(称为FP6-LLM),实现了推理成本和模型质量之间更好的权衡。实验证明,FP6-LLM使得使用单个GPU进行LLaMA-70b推理成为可能,实现的规范化推理吞吐量比FP16基准高1.69倍至2.65倍。
像素对齐语言模型
PixelLLM是一种用于图像定位任务的视觉 - 语言模型。该模型可以根据输入的位置生成描述性文字,也可以根据输入的文字生成像素坐标进行密集的定位。通过在 Localized Narrative 数据集上进行预训练,模型学习了单词与图像像素之间的对齐关系。PixelLLM 可应用于多种图像定位任务,包括指示定位、位置条件描述和密集物体描述,并在 RefCOCO 和 Visual Genome 等数据集上达到了最先进的性能。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
医疗领域先进的大型语言模型
HuatuoGPT-o1-70B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为复杂的医疗推理设计。该模型在提供最终响应之前,会生成一个复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-70B能够处理复杂的医疗问题,提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。该模型基于LLaMA-3.1-70B架构,支持英文,并且可以部署在多种工具上,如vllm或Sglang,或者直接进行推理。
开放的大型语言模型排行榜
Open LLM Leaderboard是一个由Hugging Face提供的空间,旨在展示和比较各种大型语言模型的性能。它为开发者、研究人员和企业提供了一个平台,可以查看不同模型在特定任务上的表现,从而帮助用户选择最适合自己需求的模型。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
先进的大型语言模型,用于编程
Code Llama 是一款先进的大型语言模型,可以通过文本提示生成代码。它是当前公开可用的语言模型中在编程任务上达到最佳性能的模型之一。Code Llama 可以帮助开发人员提高工作效率,降低编码门槛,并作为一个教育工具帮助编程学习者编写更健壮、更好文档化的软件。Code Llama 提供了多个版本,包括基础版、针对 Python 的专用版和针对自然语言指令的定制版。它支持多种流行的编程语言,如 Python、C++、Java 等。Code Llama 免费供研究和商业使用。
开源大型语言模型工具集合
Open Source LLM Tools是一个专注于收集和展示开源大型语言模型(LLM)工具的平台。它提供了一个更新频繁的资源库,帮助开发者和研究者发现和利用最新的开源AI工具。该平台的主要优点在于其高更新频率和对活跃开源AI开发者的聚焦,使得用户能够及时获取到行业的最新动态和技术进展。
代码合乎价值观,让技术更贴心
LushBinary是一个提供后端和前端技术支持的技术伙伴。我们的技术栈包括Node.js、Django、Ruby on Rails、.NET Core、Spring Boot、Angular、React、Next.js、Vue、Svelte、iOS、Android、React Native、Flutter、Ionic等。我们还提供AI/ML技术支持、UI/UX设计、业务自动化、DevOps和云计算等服务。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
先进的大型语言模型,具备推理和编程能力。
Mistral-Large-Instruct-2407是一个拥有123B参数的先进大型语言模型(LLM),具备最新的推理、知识和编程能力。它支持多语言,包括中文、英语、法语等十种语言,并且在80多种编程语言上受过训练,如Python、Java等。此外,它还具备代理中心能力和先进的数学及推理能力。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
先进的医疗领域大型语言模型
HuatuoGPT-o1-8B 是一个专为高级医疗推理设计的医疗领域大型语言模型(LLM)。它在提供最终响应之前会生成一个复杂的思考过程,反映并完善其推理过程。该模型基于LLaMA-3.1-8B构建,支持英文,并且采用'thinks-before-it-answers'的方法,输出格式包括推理过程和最终响应。此模型在医疗领域具有重要意义,因为它能够处理复杂的医疗问题并提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
© 2025 AIbase 备案号:闽ICP备08105208号-14