需求人群:
["视频制作者:Mira可以帮助他们生成具有复杂动态和3D效果的高质量视频。","研究人员:Mira提供了一个实验平台,用于探索和改进长视频生成技术。","技术开发者:可以通过Mira的开源代码和检查点,进行二次开发和集成。"]
使用场景示例:
生成一个小狗在沙滩上嗅探的温馨场景。
制作一个展示海龟在珊瑚礁中游动的宁静水下场景。
创建一个具有复杂动态交互的虚拟环境视频。
产品特色:
支持生成长达10秒、20秒甚至更长时间的视频序列。
能够创建具有丰富动态和复杂动作的视频。
在复杂的动态和物体交互中保持物体的3D完整性,避免明显变形。
提供开源代码和检查点,允许用户生成不同分辨率和帧数的视频。
提供数据注释和训练流程的全面开源套件。
支持自定义配置,以适应不同分辨率和帧数的视频生成需求。
持续更新,包括数据集扩展、注释流程改进和模型检查点优化。
使用教程:
步骤1:创建conda环境并激活。
步骤2:安装必要的依赖项。
步骤3:下载并配置数据集和预训练模型。
步骤4:根据需要的分辨率,运行相应的训练脚本。
步骤5:在激活的环境中,运行推理脚本进行视频生成。
步骤6:根据提供的测试提示,生成视频。
浏览量:130
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
一款面向高质量长视频生成的实验性框架,具有扩展序列长度和增强动态特性。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
文本到视频生成的创新框架
VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。
视频生成评估基准测试
Movie Gen Bench是由Facebook Research发布的视频生成评估基准测试,旨在为未来在视频生成领域的研究提供公平且易于比较的标准。该基准测试包括Movie Gen Video Bench和Movie Gen Audio Bench两个部分,分别针对视频内容生成和音频生成进行评估。Movie Gen Bench的发布,对于推动视频生成技术的发展和评估具有重要意义,它能够帮助研究人员和开发者更好地理解和改进视频生成模型的性能。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
文本到视频的生成模型
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
文本到视频生成领域的先进模型架构
Open-Sora Plan v1.2是一个开源的视频生成模型,专注于文本到视频的转换任务。它采用3D全注意力架构,优化了视频的视觉表示,并提高了推理效率。该模型在视频生成领域具有创新性,能够更好地捕捉联合空间-时间特征,为视频内容的自动生成提供了新的技术路径。
可控视频和图像生成技术
ControlNeXt是一个开源的图像和视频生成模型,它通过减少高达90%的可训练参数,实现了更快的收敛速度和卓越的效率。该项目支持多种控制信息形式,并且可以与LoRA技术结合使用,以改变风格并确保更稳定的生成效果。
探索大脑智能的AI项目
Thousand Brains Project是由Jeff Hawkins和Numenta公司发起,旨在通过理解大脑新皮层的工作原理来开发新型的人工智能系统。该项目基于Thousand Brains Theory of Intelligence,提出了与传统AI系统根本不同的大脑工作原理。项目的目标是构建一种高效且强大的智能系统,能够实现人类所具备的智能能力。Numenta公司开放了其研究资源,包括会议记录、代码开源,并建立了一个围绕其算法的大型社区。该项目得到了盖茨基金会等的资金支持,并鼓励全球研究人员参与或加入这一激动人心的项目。
提升视频理解和生成的AI模型。
ShareGPT4Video系列旨在通过密集且精确的字幕来促进大型视频-语言模型(LVLMs)的视频理解以及文本到视频模型(T2VMs)的视频生成。该系列包括:1) ShareGPT4Video,40K GPT4V注释的密集视频字幕,通过精心设计的数据过滤和注释策略开发而成。2) ShareCaptioner-Video,一个高效且功能强大的任意视频字幕模型,由其注释的4.8M高质量美学视频。3) ShareGPT4Video-8B,一个简单但卓越的LVLM,其在三个先进的视频基准测试中达到了最佳性能。
训练无关的运动克隆,实现可控视频生成
MotionClone是一个训练无关的框架,允许从参考视频进行运动克隆,以控制文本到视频的生成。它利用时间注意力机制在视频反转中表示参考视频中的运动,并引入了主时间注意力引导来减轻注意力权重中噪声或非常微妙运动的影响。此外,为了协助生成模型合成合理的空间关系并增强其提示跟随能力,提出了一种利用参考视频中的前景粗略位置和原始分类器自由引导特征的位置感知语义引导机制。
文本到视频生成的创新模型,实现姿势引导的动画制作。
Follow-Your-Pose是一个文本到视频生成的模型,它利用姿势信息和文本描述来生成可编辑、可控制姿势的角色视频。这项技术在数字人物创作领域具有重要应用价值,解决了缺乏综合数据集和视频生成先验模型的限制。通过两阶段训练方案,结合预训练的文本到图像模型,实现了姿势可控的视频生成。
文本到视频生成的开源模型,性能卓越。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
一个开源的AI驱动搜索引擎,提供深入网络的答案。
Perplexica是一个开源的AI驱动搜索引擎,它不仅搜索网络,还理解您的问题。它使用先进的机器学习算法,如相似性搜索和嵌入,来优化结果,并提供引用来源的清晰答案。使用SearxNG保持最新和完全开源,确保您始终获得最新信息,同时不损害您的隐私。
Qwen1.5系列首个千亿参数开源模型,多语言支持,高效Transformer解码器架构。
Qwen1.5-110B是Qwen1.5系列中规模最大的模型,拥有1100亿参数,支持多语言,采用高效的Transformer解码器架构,并包含分组查询注意力(GQA),在模型推理时更加高效。它在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。该模型的发布展示了在模型规模扩展方面的巨大潜力,并且预示着未来通过扩展数据和模型规模,可以获得更大的性能提升。
高效的企业级人工智能模型,低成本实现高质量定制模型。
Snowflake Arctic 是一款专为企业级人工智能任务设计的大规模语言模型(LLM),它在 SQL 生成、编码以及指令遵循等基准测试中表现出色,即使与计算预算更高的开源模型相比也毫不逊色。Arctic 通过其高效的训练和推理,为 Snowflake 客户以及广大 AI 社区提供了一种成本效益极高的定制模型创建方式。此外,Arctic 采用 Apache 2.0 许可,提供无门槛的权重和代码访问,并通过开源数据配方和研究洞察,进一步推动了社区的开放性和成本效益。
Morph Studio可以帮助用户通过文本提示创造出独特的视频
Morph Studio是一个基于人工智能的文本到视频生成平台。它使用先进的算法,可以通过用户提供的文本提示,自动生成高质量的视频。Morph Studio使创作者可以将自己的创意快速实现成动态的视觉内容。它极大地降低了视频制作的门槛,用户无需具备专业技能和昂贵设备,就可以创造出独特的视频作品。此外,Morph Studio还提供了强大的自定义功能,用户可以调整生成视频的长度、分辨率、样式等参数,输出结果更符合自己的需求。总之,这是一款极具创新和颠覆性的人工智能产品。
AI-based decoder for quantum computing error correction
AlphaQubit是由Google DeepMind和Quantum AI团队共同开发的人工智能系统,它能够以最先进的准确性识别量子计算机中的错误。这项技术结合了机器学习和量子纠错的专业知识,旨在推动可靠量子计算机的构建,这对于解决复杂问题、实现科学突破和探索新领域具有重要意义。AlphaQubit的主要优点包括高准确性和对大规模量子计算的适用性。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
开源人工智能定义,推动AI领域的开放与合作
Open Source AI Definition(OSAID)是由Open Source Initiative(OSI)发布的行业首个开源人工智能定义。它提供了一个标准,通过社区领导的开放和公共评估来验证一个AI系统是否可以被认为是开源AI。OSAID v1.0的发布是多年研究和合作的结果,经过国际研讨会和为期一年的共同设计过程。这个定义要求开源模型提供足够的训练数据信息,以便熟练的人可以使用相同或类似的数据重建一个大致等效的系统。OSAID的发布对于推动AI领域的开放性、透明度和合作具有重要意义,它强调了开源原则在AI发展中的核心地位,并为独立机器学习研究人员和大型AI开发者之间的透明度提供了支持。
© 2024 AIbase 备案号:闽ICP备08105208号-14