浏览量:1908
最新流量情况
月访问量
7711.21k
平均访问时长
00:00:57
每次访问页数
1.95
跳出率
52.90%
流量来源
直接访问
32.89%
自然搜索
58.22%
邮件
0.08%
外链引荐
6.55%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
4.16%
英国
5.57%
印度
6.55%
日本
3.69%
美国
36.93%
谷歌最强大的AI模型
Gemini是谷歌最强大和通用的AI模型,旨在成为多模态的,并针对三种不同大小进行了优化:Ultra,Pro和Nano。Gemini模型具有卓越的性能和下一代功能,可为各种应用提供强大的AI支持。 它提供可扩展的,高效的解决方案,并注重责任和安全性。 Gemini模型已经在市场上可用。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
即买即用的人工智能对话服务
2233.ai是一个提供即买即用人工智能对话服务的网站。用户无需注册账号即可购买并使用服务,享受原生的ChatGPT Plus或Claude Pro体验。该平台强调个人隐私保护,每位用户的对话记录独立存储,确保私密安全。此外,2233.ai承诺无网络限制或封号问题,用户可以随时随地接入服务。价格方面,2233.ai提供的服务价格不到ChatGPT Plus订阅的一半,让更多人能够以更优惠的价格享受到先进的人工智能技术。
统一文本、音乐和动作生成模型
UniMuMo是一个多模态模型,能够将任意文本、音乐和动作数据作为输入条件,生成跨所有三种模态的输出。该模型通过将音乐、动作和文本转换为基于令牌的表示,通过统一的编码器-解码器转换器架构桥接这些模态。它通过微调现有的单模态预训练模型,显著降低了计算需求。UniMuMo在音乐、动作和文本模态的所有单向生成基准测试中都取得了有竞争力的结果。
国产化大模型,支持多模态,快速低成本智能化转型。
岩芯数智是一家专注于人工智能领域的公司,提供多种智能模型服务,包括Yan模型和Dolphin模型。Yan模型是国产化的大模型,支持多模态,承诺为用户提供训练周期短、数据集需求小、性价比更高的服务,帮助各产业链快速、低成本向智能化转型。Dolphin模型则提供智能对话、文章生成、文案摘要等功能,支持私域模型微调,以满足不同行业的需求。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
基于 GPT-4 的代码审查模型
CriticGPT 是基于 GPT-4 模型开发的工具,旨在帮助人类审查 ChatGPT 的代码输出。通过识别错误并提供评论,提高训练师审查的准确性和效率。该工具能有效捕捉潜在问题,为 AI 模型的改进提供有力支持。
革命性AI技术,多模态智能互动
GPT-4o是OpenAI的最新创新,代表了人工智能技术的前沿。它通过真正的多模态方法扩展了GPT-4的功能,包括文本、视觉和音频。GPT-4o以其快速、成本效益和普遍可访问性,革命性地改变了我们与AI技术的互动。它在文本理解、图像分析和语音识别方面表现出色,提供流畅直观的AI互动,适合从学术研究到特定行业需求的多种应用。
多模态语言模型的视觉推理工具
Visual Sketchpad 是一种为多模态大型语言模型(LLMs)提供视觉草图板和绘图工具的框架。它允许模型在进行规划和推理时,根据自己绘制的视觉工件进行操作。与以往使用文本作为推理步骤的方法不同,Visual Sketchpad 使模型能够使用线条、框、标记等更接近人类绘图方式的元素进行绘图,从而更好地促进推理。此外,它还可以在绘图过程中使用专家视觉模型,例如使用目标检测模型绘制边界框,或使用分割模型绘制掩码,以进一步提高视觉感知和推理能力。
首个全面评估多模态大型语言模型在视频分析中的性能基准。
Video-MME是一个专注于多模态大型语言模型(MLLMs)在视频分析领域性能评估的基准测试。它填补了现有评估方法中对MLLMs处理连续视觉数据能力的空白,为研究者提供了一个高质量和全面的评估平台。该基准测试覆盖了不同长度的视频,并针对MLLMs的核心能力进行了评估。
实时更新的多模态模型性能排行榜
OpenCompass多模态排行榜是一个实时更新的平台,用于评估和排名不同的多模态模型(VLMs)。它通过8个多模态基准测试来计算模型的平均得分,并提供详细的性能数据。该平台仅包含开源的VLMs或公开可用的APIs,旨在帮助研究人员和开发者了解当前多模态模型的最新进展和性能表现。
GPT4 Omni是一款远不止于语音助手的产品。
GPT4 Omni是一种全新的模型,可以处理文本、视觉和音频,具有多模态功能。它在语音能力方面具有革命性,同时还具备文本、图像和音频处理的能力。GPT4 Omni的优势是可以同时处理和生成多种主要模态,且响应时间较快。
GPT4 Omni是一款更多功能的语音助手。
GPT4 Omni是一款多模态模型,能处理和生成文本、音频和图像。它结合了OpenAI的Whisper和TTS技术,具有更好的推理能力和更低的延迟。GPT4 Omni是OpenAI目前最先进的模型,具有革命性的多模态能力,为用户提供了更多的创造力和灵活性。它的价格更低且更高效,代表了人工智能技术的新一代。
强大的多模态LLM,商业解决方案
Reka Core是一个GPT-4级别的多模态大型语言模型(LLM),具备图像、视频和音频的强大上下文理解能力。它是目前市场上仅有的两个商用综合多模态解决方案之一。Core在多模态理解、推理能力、编码和Agent工作流程、多语言支持以及部署灵活性方面表现出色。
基于开发者构建的生产 AI 平台
Fireworks 与世界领先的生成式 AI 研究人员合作,以最快的速度提供最佳模型。拥有经 Fireworks 精心筛选和优化的模型,以及企业级吞吐量和专业的技术支持。定位为最快速且最可靠的 AI 平台。
用于自动驾驶的大规模视频生成模型
GenAD是由上海人工智能实验室联合香港科技大学、德国图宾根大学和香港大学共同推出的首个大规模自动驾驶视频生成模型。它通过预测和模拟真实世界场景,为自动驾驶技术的研究和应用提供支撑。GenAD在理解复杂动态环境、适应开放世界场景、精准预测等方面具有较强能力,能够通过语言和行车轨迹进行控制,并展现出应用于自动驾驶规划任务的潜力,有助于提高行车安全性和效率。
用于人形机器人学习的通用基础模型
NVIDIA Project GR00T是一种通用基础模型,可在仿真和真实世界中改变人形机器人的学习方式。通过在NVIDIA GPU加速模拟中进行训练,GR00T使得人形机器人能够从少量的人类演示中通过模仿学习和NVIDIA Isaac Lab进行强化学习,并可从视频数据生成机器人动作。GR00T模型接受多模态指令和过去的交互作为输入,并输出机器人需要执行的动作。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
一款强大的多模态小语言模型
Imp项目旨在提供一系列强大的多模态小语言模型(MSLMs)。我们的imp-v1-3b是一个拥有30亿参数的强大MSLM,它建立在一个小而强大的SLM Phi-2(27亿)和一个强大的视觉编码器SigLIP(4亿)之上,并在LLaVA-v1.5训练集上进行了训练。Imp-v1-3b在各种多模态基准测试中明显优于类似模型规模的对手,甚至在各种多模态基准测试中表现略优于强大的LLaVA-7B模型。
先进的开源多模态模型
Yi-VL-34B是 Yi Visual Language(Yi-VL)模型的开源版本,是一种多模态模型,能够理解和识别图像,并进行关于图像的多轮对话。Yi-VL 在最新的基准测试中表现出色,在 MMM 和 CMMMU 两个基准测试中均排名第一。
文本转音乐和音频
MAGNeT是一个提供各种人工智能模型和数据集的社区平台。用户可以在平台上找到各种先进的自然语言处理和机器学习模型,以及相关的数据集。该平台还提供了一系列解决方案,包括文本到语音转换、图像处理等。MAGNeT定位于为开发人员、研究人员和企业提供高质量的人工智能模型和数据集。
LiteLlama-460M-1T: 减小规模的 Llama
LiteLlama-460M-1T 是一个开源的人工智能模型,使用 1T 个令牌进行训练,具有 460M 个参数。它是 Meta AI 的 LLaMa 2 的一个缩减版本,用于提供更小的模型规模。
© 2024 AIbase 备案号:闽ICP备08105208号-14