需求人群:
"Free AI Hunter适合需要寻找和使用AI API的开发者、研究人员和企业用户。无论是进行学术研究、产品开发还是商业应用,用户都能在这个平台上找到合适的AI技术解决方案。"
使用场景示例:
开发者利用Qwen/Qwen2-7B-Instruct API进行文本生成和语言理解任务
企业通过THUDM/gIm-4-9b-chat API集成到客服系统中,提高客户服务效率
研究人员使用LLaMA3 8b模型进行大规模语言模型训练和研究
产品特色:
提供广泛的AI API,包括自然语言处理、计算机视觉、机器学习等
支持搜索功能,方便用户快速找到所需API
数据库定期更新,确保信息的时效性和准确性
提供API的免费和付费选项,满足不同用户需求
用户界面友好,易于导航和使用
使用教程:
访问Free AI Hunter官网
使用搜索功能,根据需求筛选AI API
查看API详情,包括功能、限制和价格
选择适合的API并获取使用权限
根据API文档进行集成和开发
测试并部署API到实际应用中
浏览量:47
最新流量情况
月访问量
3243
平均访问时长
00:00:13
每次访问页数
1.09
跳出率
50.96%
流量来源
直接访问
73.48%
自然搜索
10.46%
邮件
0.04%
外链引荐
6.74%
社交媒体
8.63%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
澳大利亚
5.13%
英国
1.11%
韩国
16.10%
美国
59.13%
开发者可使用的Grok系列基础模型API
xAI API提供了对Grok系列基础模型的程序化访问,支持文本和图像输入,具有128,000个token的上下文长度,并支持函数调用和系统提示。该API与OpenAI和Anthropic的API完全兼容,简化了迁移过程。产品背景信息显示,xAI正在进行公共Beta测试,直至2024年底,期间每位用户每月可获得25美元的免费API积分。
AIGC 应用快速构建平台
派欧算力云大模型 API 提供易于集成的各模态 API 服务,包括大语言模型、图像、音频、视频等,旨在帮助用户轻松构建专属的 AIGC 应用。该平台拥有丰富的模型资源,支持个性化需求的模型训练和托管,同时保证用户私有模型的保密性。它以高性价比、高吞吐量和高性能推理引擎为特点,适用于多种 AI 应用场景,如聊天机器人、总结摘要、小说生成器等。
2024年精选免费AI API平台
Free AI Hunter是一个致力于收集和提供2024年免费AI API以及付费选项的综合性平台。它涵盖了自然语言处理、计算机视觉、机器学习等多种AI API,定期更新数据库以确保信息的最新和准确性。用户可以通过搜索功能轻松找到满足特定需求的AI API。
开创性的质量与成本新标准的图谱增强型检索增强生成模型
LazyGraphRAG是微软研究院开发的一种新型图谱增强型检索增强生成(RAG)模型,它不需要预先对源数据进行总结,从而避免了可能让一些用户和用例望而却步的前期索引成本。LazyGraphRAG在成本和质量方面具有内在的可扩展性,它通过推迟使用大型语言模型(LLM)来大幅提高答案生成的效率。该模型在本地和全局查询的性能上均展现出色,同时查询成本远低于传统的GraphRAG。LazyGraphRAG的出现,为AI系统在私有数据集上处理复杂问题提供了新的解决方案,具有重要的商业和技术价值。
开放的大型推理模型,解决现实世界问题
Marco-o1是一个开放的大型推理模型,旨在通过先进的技术如Chain-of-Thought (CoT) fine-tuning、Monte Carlo Tree Search (MCTS)、反射机制和创新的推理策略,优化复杂现实世界问题的解决任务。该模型不仅关注数学、物理和编程等有标准答案的学科,还强调开放性问题的解决。Marco-o1由阿里巴巴国际数字商务的MarcoPolo团队开发,具有强大的推理能力,已在多个领域展示出卓越的性能。
Qwen2.5-Coder系列中的0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,显著提升了编码能力。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,编码能力与GPT-4o相当。此外,Qwen2.5-Coder还为实际应用如代码代理提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
IBM Granite 3.0模型,高效能AI语言模型
IBM Granite 3.0模型是一系列高性能的AI语言模型,由IBM开发,并通过Ollama平台提供。这些模型在超过12万亿个token上进行训练,展示了在性能和速度上的显著提升。它们支持基于工具的用例,包括检索增强生成(RAG)、代码生成、翻译和错误修复。IBM Granite 3.0模型包括密集型模型和Mixture of Expert(MoE)模型,后者专为低延迟使用而设计,适合在设备上应用或需要即时推理的场景。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
先进的多模态AI模型家族
Molmo是一个开放的、最先进的多模态AI模型家族,旨在通过学习指向其感知的内容,实现与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。Molmo通过学习指向其感知的内容,实现了与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
一站式RAG搜索SDK
Korvus是一个基于Postgres构建的搜索SDK,它将整个RAG(检索增强生成)流程统一到单一的数据库查询中。它提供了高性能、可定制的搜索能力,同时最小化了基础设施的考虑。Korvus利用PostgresML的pgml扩展和pgvector扩展,将RAG流程压缩在Postgres内部。它支持多语言SDK,包括Python、JavaScript、Rust和C,允许开发者无缝集成到现有的技术栈中。
自动化生成高质量函数调用数据集的管道
APIGen是一个自动化的数据生成管道,旨在为函数调用应用生成可验证的高质量数据集。该模型通过三个层次的验证过程确保数据的可靠性和正确性,包括格式检查、实际函数执行和语义验证。APIGen能够规模化、结构化地生成多样化的数据集,并通过实际执行API来验证生成的函数调用的正确性,这对于提升函数调用代理模型的性能至关重要。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
Google 一款轻量级、高效能的AI模型,专为大规模高频任务设计。
Gemini 1.5 Flash是Google DeepMind团队推出的最新AI模型,它通过'蒸馏'过程从更大的1.5 Pro模型中提炼出核心知识和技能,以更小、更高效的模型形式提供服务。该模型在多模态推理、长文本处理、聊天应用、图像和视频字幕生成、长文档和表格数据提取等方面表现出色。它的重要性在于为需要低延迟和低成本服务的应用提供了解决方案,同时保持了高质量的输出。
开源框架,用于构建模块化的生产级应用程序。
Cognita 是一个开源框架,用于组织 RAG(Retrieval Augmented Generation)代码库,并提供一个前端界面,以便在不同的 RAG 定制中进行实验。它提供了一种简单的方法来组织代码库,使得在本地测试变得容易,同时也能够部署到生产环境中。Cognita 使用 Langchain/Llamaindex 作为底层技术,并提供了一个组织结构,使得每个 RAG 组件都是模块化的、API 驱动的,并且易于扩展。
自动化文档处理,将非结构化内容转化为结构化可操作数据
Hyperscience是一款领先的企业AI平台,帮助您自动化文档处理流程,将非结构化内容转化为结构化可操作数据。它使用先进的机器学习和自然语言处理技术,能够准确地识别和提取关键信息,并将其转化为可用的数据。Hyperscience的优势在于高度准确的识别能力、高度可扩展的处理能力和快速部署的灵活性。该产品适用于各种行业和场景,包括金融、保险、医疗等。具体定价和定位请参考官方网站。
Docker推出的人工智能应用开发解决方案
Docker GenAI Stack是一个面向开发者的人工智能应用开发解决方案。它整合了各大领先的AI技术,只需几次点击就可以部署完整的AI应用栈,实现代码级的AI集成。GenAI Stack内置预配置的大型语言模型,提供Ollama管理,采用Neo4j作为默认数据库,可实现知识图谱和向量搜索。还配备了LangChain框架用于编排和调试,以及全面的技术支持和社区资源。GenAI Stack使AI应用开发变得简单高效,开发者可以快速构建实用的AI解决方案。
AI研究论文记忆助手
PaperClip是AI研究者的第二大脑,用于机器学习、计算机视觉和自然语言处理论文的回顾和记忆。它可以帮助您记忆来自机器学习、计算机视觉和自然语言处理论文的详细信息,包括重要发现和论文细节。您可以从任何地方记忆,无论是AI研究论文、机器学习博客文章还是新闻报道。PaperClip的AI在本地运行,不会向任何服务器发送数据。它可以将您的记忆保存在本地,并提供简单的搜索功能,让您随时找回重要发现。PaperClip支持离线搜索,即使没有互联网连接也可以进行搜索。您还可以随时清理您的数据,一键重置保存的信息。PaperClip以Svelte和Hugo Duprez为基础开发。
先进的文本生成模型,支持多样化任务处理。
OLMo-2-1124-7B-DPO是由Allen人工智能研究所开发的一个大型语言模型,经过特定的数据集进行监督式微调,并进一步进行了DPO训练。该模型旨在提供在多种任务上,包括聊天、数学问题解答、文本生成等的高性能表现。它是基于Transformers库构建的,支持PyTorch,并以Apache 2.0许可发布。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
基于大型语言模型的主动式代理,预测用户需求并主动提供帮助。
ProactiveAgent是一个基于大型语言模型(LLM)的主动式代理项目,旨在构建一个能够预测用户需求并主动提供帮助的智能代理。该项目通过数据收集和生成管道、自动评估器和训练代理来实现这一目标。ProactiveAgent的主要优点包括环境感知、协助标注、动态数据生成和构建管道,其奖励模型在测试集上达到了0.918的F1分数,显示出良好的性能。该产品背景信息显示,它适用于编程、写作和日常生活场景,并且遵循Apache License 2.0协议。
科学文献合成的检索增强型语言模型
OpenScholar是一个检索增强型语言模型(LM),旨在通过首先搜索文献中的相关论文,然后基于这些来源生成回答,来帮助科学家有效地导航和综合科学文献。该模型对于处理每年发表的数百万篇科学论文,以及帮助科学家找到他们需要的信息或跟上单一子领域最新发现具有重要意义。
高质量数据集,用于OLMo2训练的第二阶段。
DOLMino dataset mix for OLMo2 stage 2 annealing training是一个混合了多种高质数据的数据集,用于在OLMo2模型训练的第二阶段。这个数据集包含了网页页面、STEM论文、百科全书等多种类型的数据,旨在提升模型在文本生成任务中的表现。它的重要性在于为开发更智能、更准确的自然语言处理模型提供了丰富的训练资源。
一款经过优化的大型语言模型,擅长文本生成和对话。
OLMo-2-1124-13B-Instruct是由Allen AI研究所开发的一款大型语言模型,专注于文本生成和对话任务。该模型在多个任务上表现出色,包括数学问题解答、科学问题解答等。它是基于13B参数的版本,经过在特定数据集上的监督微调和强化学习训练,以提高其性能和安全性。作为一个开源模型,它允许研究人员和开发者探索和改进语言模型的科学。
高性能英文对话生成模型
OLMo-2-1124-7B-Instruct是由Allen人工智能研究所开发的一个大型语言模型,专注于对话生成任务。该模型在多种任务上进行了优化,包括数学问题解答、GSM8K、IFEval等,并在Tülu 3数据集上进行了监督微调。它是基于Transformers库构建的,可以用于研究和教育目的。该模型的主要优点包括高性能、多任务适应性和开源性,使其成为自然语言处理领域的一个重要工具。
高性能AI模型,提升推理任务能力
Skywork-o1-Open-PRM-Qwen-2.5-7B是由昆仑科技Skywork团队开发的一系列模型,这些模型结合了o1风格的慢思考和推理能力。这个模型系列不仅在输出中展现出天生的思考、规划和反思能力,而且在标准基准测试中显示出推理技能的显著提升。它代表了AI能力的战略进步,将一个原本较弱的基础模型推向了推理任务的最新技术(SOTA)。
最先进的全开放语言模型
OLMo 2是由Ai2推出的最新全开放语言模型,包括7B和13B两种规模的模型,训练数据高达5T tokens。这些模型在性能上与同等规模的全开放模型相当或更优,并且在英语学术基准测试中与开放权重模型如Llama 3.1竞争。OLMo 2的开发注重模型训练的稳定性、阶段性训练干预、最先进的后训练方法和可操作的评估框架。这些技术的应用使得OLMo 2在多个任务上表现出色,特别是在知识回忆、常识、一般和数学推理方面。
利用压缩比快速检测AI生成文本的工具
ZipPy是一个研究性质的快速AI检测工具,它使用压缩比来间接测量文本的困惑度。ZipPy通过比较AI生成的语料库与提供的样本之间的相似性来进行分类。该工具的主要优点是速度快、可扩展性强,并且可以嵌入到其他系统中。ZipPy的背景信息显示,它是作为对现有大型语言模型检测系统的补充,这些系统通常使用大型模型来计算每个词的概率,而ZipPy提供了一种更快的近似方法。
© 2024 AIbase 备案号:闽ICP备08105208号-14