需求人群:
"DIG-In适用于需要评估和确保其图像生成模型在全球范围内表现一致的研究人员和开发者。它特别适用于那些关注模型在不同文化和地理背景下的公平性和包容性的应用场景。"
使用场景示例:
研究人员使用DIG-In评估不同图像生成模型在非洲地区的输出质量。
开发者利用DIG-In确保其应用在全球范围内提供一致的用户体验。
教育机构使用DIG-In作为教学工具,教授学生如何评估和改进AI模型的公平性。
产品特色:
使用GeoDE和DollarStreet数据集评估生成图像的质量差异。
计算生成图像的精度、召回率、覆盖度和密度指标。
使用CLIPScore指标评估图像的一致性。
提供脚本以从生成图像中提取特征。
支持自定义图像或特征路径的指针。
提供计算指标的脚本,包括平衡参考数据集。
使用教程:
1. 生成对应于csv文件中提示的图像。
2. 提供指向提示csv和生成图像文件夹的指针,以提取图像特征。
3. 使用提取的特征计算指标,包括精度、召回率、覆盖度和密度。
4. 根据需要更新特征文件的路径。
5. 运行计算指标的脚本,包括平衡参考数据集。
6. 分析生成的csv文件中的指标结果,以评估模型性能。
浏览量:54
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
评估图像生成模型在不同地理区域的质量、多样性和一致性。
DIG-In是一个用于评估文本到图像生成模型在不同地理区域中质量、多样性和一致性差异的库。它使用GeoDE和DollarStreet作为参考数据集,通过计算生成图像的相关特征和精度、覆盖度指标,以及使用CLIPScore指标来衡量模型的表现。该库支持研究人员和开发者对图像生成模型进行地理多样性的审计,以确保其在全球范围内的公平性和包容性。
AI生成的日本名字,尊重传统和文化多样性。
Japanese Name Generator是一个在线网站,利用人工智能技术为用户提供个性化的日本名字生成服务。它不仅尊重日本传统的命名习惯,还考虑到文化多样性,为用户提供独特且有意义的名字。该产品的主要优点在于其便捷性、创意性和文化尊重,用户可以通过简单的操作获得一个符合自己个性和需求的日本名字。
生成超写实人物图像
Unreal Photo Shoot是一款利用人工智能技术生成多样化、超写实的人物图像的工具。用户可以根据需求调整人物的外貌、服装风格、拍摄场景和姿势。非常适用于广告、设计和营销等领域。该产品可以定制人物的性别、年龄、种族、发色等特征,满足不同用户对于多样性的要求。
评估ChatGPT回答的偏见、质量和可靠性
使用Skeptic AI评估ChatGPT生成的回答的偏见、质量和可靠性。它是一个强大的工具,帮助用户评估AI生成信息的准确性、有效性和可信度,促进更具辨别力的方法。
ImagenHub:标准化条件图像生成模型的推理和评估
ImagenHub是一个一站式库,用于标准化所有条件图像生成模型的推理和评估。该项目首先定义了七个突出的任务并创建了高质量的评估数据集。其次,我们构建了一个统一的推理管道来确保公平比较。第三,我们设计了两个人工评估指标,即语义一致性和感知质量,并制定了全面的指南来评估生成的图像。我们训练专家评审员根据提出的指标来评估模型输出。该人工评估在76%的模型上实现了高的评估者间一致性。我们全面地评估了约30个模型,并观察到三个关键发现:(1)现有模型的性能普遍不令人满意,除了文本引导的图像生成和主题驱动的图像生成外,74%的模型整体得分低于0.5。(2)我们检查了已发表论文中的声明,发现83%的声明是正确的。(3)除了主题驱动的图像生成外,现有的自动评估指标都没有高于0.2的斯皮尔曼相关系数。未来,我们将继续努力评估新发布的模型,并更新排行榜以跟踪条件图像生成领域的进展。
重新思考 FID:为图像生成提供更好的评估指标
该论文提出了对图像生成模型进行评估的新指,提出了 Frechet Inception Distance (FID) 指标存在的问题,并提出了一种新的评估指标 CMMD。通过大量实验证明,FID 指标对文本到图像模型的评估可能不可靠,而 CMMD 指标可以更可靠地评估图像质量。
高分辨率图像生成模型
FLUX1.1 [pro] 是一款高分辨率图像生成模型,支持高达4MP的图像分辨率,同时保持每样本仅10秒的生成时间。FLUX1.1 [pro] – ultra模式能够在不牺牲速度的情况下,生成四倍于标准分辨率的图像,性能基准测试显示其生成速度超过同类高分辨率模型2.5倍以上。此外,FLUX1.1 [pro] – raw模式为追求真实感的创作者提供了更自然、更少合成感的图像生成效果,显著提高了人物多样性和自然摄影的真实性。该模型以每张图片0.06美元的竞争力价格提供。
朱雀大模型检测,精准识别AI生成图像,助力内容真实性鉴别。
朱雀大模型检测是腾讯推出的一款AI检测工具,主要功能是检测图片是否由AI模型生成。它经过大量自然图片和生成图片的训练,涵盖摄影、艺术、绘画等内容,可检测多类主流文生图模型生成图片。该产品具有高精度检测、快速响应等优点,对于维护内容真实性、打击虚假信息传播具有重要意义。目前暂未明确其具体价格,但从功能来看,主要面向需要进行内容审核、鉴别真伪的机构和个人,如媒体、艺术机构等。
SliderSpace 是一种用于分解扩散模型视觉能力的技术,通过直观的滑块实现对模型的可控性和可解释性。
SliderSpace 是一项创新技术,旨在提高扩散模型的可控性和可解释性。它通过自动发现模型内部的视觉知识,将其分解为直观的滑块,用户可以通过这些滑块轻松调整图像生成的方向。该技术不仅能够揭示模型对不同概念的理解,还能显著提高图像生成的多样性。SliderSpace 的主要优点包括自动化发现方向、语义正交性和分布一致性,使其成为探索和利用扩散模型视觉能力的强大工具。该技术目前处于研究阶段,尚未明确具体的价格和商业定位。
探索自然多样性,点击随机生成动物
Random Animal Generator是一个旨在帮助用户通过点击随机按钮来发现自然多样性的网站。该网站拥有一个庞大的动物图片数据库,每次点击“随机”按钮时,系统都会从数据库中随机选择一张图片进行展示。这个自动化的过程确保用户每次点击都能获得一个独特且令人惊喜的动物图片。该网站不断更新动物种类和功能,使得每个人都能轻松发现令人惊叹的动物图片。
视频生成模型的时间组合性评估工具
TC-Bench是一个专门用于评估视频生成模型的时间组合性的工具。它通过精心设计的文本提示、相应的真实视频以及强大的评估指标来衡量视频生成模型在不同时间点上新概念的出现及其关系转换的能力。TC-Bench不仅适用于文本条件模型,也适用于图像条件模型,能够进行生成性帧插值。该工具的开发旨在推动视频生成技术的发展,提高生成视频的质量和一致性。
易于使用的SDXL动漫模型
Neta Art XL V1.0是一款易于使用的SDXL动漫模型,它在角色视觉叙事中提供了更好的稳定性和解剖学准确性。它支持广泛的CFG范围(5 - 20),并具有很好的正交风格,可以轻松结合创造新风格。此外,该模型在维持稳定性、提示跟随能力和解剖学准确性方面表现出色,即使在具有挑战性的姿势或摄像机角度下也是如此。
利用尖端AI技术,将创意转化为高质量图像。
Flux AI 图像生成器是由Black Forest Labs开发的,基于革命性的Flux系列模型,提供尖端的文本到图像技术。该产品通过其120亿参数的模型,能够精确解读复杂的文本提示,创造出多样化、高保真的图像。Flux AI 图像生成器不仅适用于个人艺术创作,也可用于商业应用,如品牌视觉、社交媒体内容等。它提供三种不同的版本以满足不同用户的需求:Flux Pro、Flux Dev和Flux Schnell。
AI 图像生成进入 “毫秒级” 时代,速度快、质量高。
腾讯混元图像 2.0 是腾讯最新发布的 AI 图像生成模型,显著提升了生成速度和画质。通过超高压缩倍率的编解码器和全新扩散架构,使得图像生成速度可达到毫秒级,避免了传统生成的等待时间。同时,模型通过强化学习算法与人类美学知识的结合,提升了图像的真实感和细节表现,适合设计师、创作者等专业用户使用。
AI 生成的免费高质量图片
Stock.AI 是一个 AI 生成的免费高质量股票图片平台。我们使用稳定扩散、DALLE.2 等先进的 AI 技术,为用户提供数百万个灵感和 AI 杰作。用户可以搜索各种主题的股票图片,包括艺术、自然、动画、卡通、超级英雄、太空、绘画、森林、机器人、海洋、复古、漫威等。Stock.AI 平台致力于为用户提供多样化且高质量的股票图片资源。
快速可控的图像生成与潜在一致性模型
PIXART LCM是一个文本到图像合成框架,将潜在一致性模型(LCM)和ControlNet集成到先进的PIXART-α模型中。PIXART LCM以其能够通过高效的训练过程生成1024px分辨率的高质量图像而闻名。在PIXART-δ中集成LCM显著加快了推理速度,使得仅需2-4步即可生成高质量图像。特别值得注意的是,PIXART-δ实现了在0.5秒内生成1024x1024像素图像的突破,比PIXART-α改进了7倍。此外,PIXART-δ经过精心设计,可在单日内在32GB V100GPU上进行高效训练。具有8位推理能力的PIXART-δ可以在8GB GPU内存约束下合成1024px图像,极大地增强了其可用性和可访问性。此外,引入类似于ControlNet的模块可以对文本到图像扩散模型进行精细控制。我们引入了一种新颖的ControlNet-Transformer架构,专门为Transformers量身定制,实现了显式可控性和高质量图像生成。作为一种最先进的开源图像生成模型,PIXART-δ为稳定扩散模型家族提供了一个有前途的选择,为文本到图像合成做出了重大贡献。
开启创造新纪元的AI图像生成工具
FLUX.1是Black Forest Labs推出的先进AI图像生成模型,提供高质量的图像生成服务,支持多种语言提示,具有出色的视觉质量和图像细节,以及多样化的输出选项。FLUX.1 [pro]、[dev]和[schnell]三个版本分别针对不同的使用场景和需求,满足从专业到个人的各种应用。
使用AI生成令人惊叹的海报
DeePoster是一个利用人工智能技术帮助用户快速生成海报的网站。它通过分析用户输入的内容,自动生成与信息完美匹配的海报元素,创造出易于理解、分享和采取行动的视觉内容。DeePoster的智能海报生成器将用户的想法轻松转化为引人注目的视觉内容,无需设计技能即可实现专业级别的设计效果。它支持多种输入方式,包括文本、URL或文件,并提供多种海报风格供用户选择。DeePoster适用于市场营销人员、小企业主、内容创作者/影响者、教育工作者、非营利组织和活动组织者,帮助他们快速创建引人注目的海报,满足不断变化的视觉内容需求。
基于熵的采样技术,优化模型输出的多样性和准确性
Entropy-based sampling 是一种基于熵理论的采样技术,用于提升语言模型在生成文本时的多样性和准确性。该技术通过计算概率分布的熵和方差熵来评估模型的不确定性,从而在模型可能陷入局部最优或过度自信时调整采样策略。这种方法有助于避免模型输出的单调重复,同时在模型不确定性较高时增加输出的多样性。
先进的文本到图像AI模型,实现高质量图像生成。
Stable Diffusion 3 Medium是Stability AI迄今为止发布的最先进文本到图像生成模型。它具有2亿参数,提供出色的细节、色彩和光照效果,支持多种风格。模型对长文本和复杂提示的理解能力强,能够生成具有空间推理、构图元素、动作和风格的图像。此外,它还实现了前所未有的文本质量,减少了拼写、字距、字母形成和间距的错误。模型资源效率高,适合在标准消费级GPU上运行,且具备微调能力,可以吸收小数据集中的细微细节,非常适合定制化。
提高文本到图像合成质量的一致性蒸馏技术
TCD是一种用于文本到图像合成的一致性蒸馏技术,它通过轨迹一致性函数(TCF)和策略性随机采样(SSS)来减少合成过程中的错误。TCD在低NFE(噪声自由能量)时显著提高图像质量,并在高NFE时保持比教师模型更详细的结果。TCD不需要额外的判别器或LPIPS监督,即可在低NFE和高NFE时均保持优越的生成质量。
用于评估大型语言模型事实性的最新基准
FACTS Grounding是Google DeepMind推出的一个全面基准测试,旨在评估大型语言模型(LLMs)生成的回应是否不仅在给定输入方面事实准确,而且足够详细,能够为用户提供满意的答案。这一基准测试对于提高LLMs在现实世界中应用的信任度和准确性至关重要,有助于推动整个行业在事实性和基础性方面的进步。
用于评估文本到视觉生成的创新性指标和基准测试
Evaluating Text-to-Visual Generation with Image-to-Text Generation提出了一种新的评估指标VQAScore,能够更好地评估复杂的文本到视觉生成效果,并引入了GenAI-Bench基准测试集。VQAScore基于CLIP-FlanT5模型,能够在文本到图像/视频/3D生成评估中取得最佳性能,是一种强大的替代CLIPScore的方案。GenAI-Bench则提供了包含丰富组合语义的实际场景测试文本,可用于全面评估生成模型的性能。
最新的图像上色算法
DDColor 是最新的图像上色算法,输入一张黑白图像,返回上色处理后的彩色图像,并能够实现自然生动的上色效果。 该模型为黑白图像上色模型,输入一张黑白图像,实现端到端的全图上色,返回上色处理后的彩色图像。 模型期望使用方式和适用范围: 该模型适用于多种格式的图像输入,给定黑白图像,生成上色后的彩色图像;给定彩色图像,将自动提取灰度通道作为输入,生成重上色的图像。
低成本高质量文本到图像生成模型
PIXART-α是一种基于Transformer的文本到图像生成模型,其图像生成质量与最先进的图像生成器相当,支持高分辨率图像合成,训练速度明显优于现有的大规模T2I模型,训练成本低,可节省近30万美元,并减少90%的CO2排放。PIXART-α在图像质量、艺术性和语义控制方面表现出色,可为AIGC社区和初创企业提供新的见解,加速从头开始构建高质量、低成本的生成模型。
训练无监督一致性文本到图像生成
ConsiStory是一个无需训练就能实现在预训练的文本到图像模型中生成一致性主体的方法。它不需要微调或个性化,因此比先前最优方法快20倍。我们通过引入以主体为驱动的共享注意力模块和基于对应关系的特征注入来增强模型,以促进图像之间的主体一致性。另外,我们开发了在保持主体一致性的同时鼓励布局多样性的策略。ConsiStory可以自然地扩展到多主体场景,甚至可以实现对常见对象的无需训练的个性化。
提升生成模型质量和加速推理的项目
UniFL是一个项目,旨在提升生成模型质量和加速推理速度。它通过感知反馈学习、解耦反馈学习和对抗性反馈学习三个关键组件,有效解决了当前扩散模型存在的图像质量、美学吸引力和推理速度等问题。经过实验验证和用户研究,UniFL在多个扩散模型上展现出显著的性能提升和强大的泛化能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14