需求人群:
"Data-Juicer 适合需要处理和优化大量多模态数据的研究者和开发者,特别是那些在大型语言模型领域工作的专业人士。它能够帮助他们提高数据处理的效率和质量,加速模型训练和优化过程。"
使用场景示例:
在金融分析领域,Data-Juicer 被用于优化数据,提高模型的预测准确性。
作为阅读助手,Data-Juicer 帮助处理和分析大量文档数据,提升用户体验。
在学术研究中,Data-Juicer 用于处理科学文献数据,辅助研究人员进行数据分析和模型训练。
产品特色:
系统化和可复用:提供80多个核心操作符,20多个可复用的配置配方,以及20多个功能丰富的专用工具包。
数据循环与沙盒:支持一站式数据-模型协同开发,通过沙盒实验室实现快速迭代。
面向生产环境:提供高效并行的数据处理流程,优化内存和CPU使用,具备自动容错功能。
全面的数据处理配方:提供数十种预构建的数据处理配方,适用于预训练、微调等多种场景。
灵活且可扩展:支持大多数数据格式,并允许灵活组合操作符,用户可以自定义操作符进行数据处理。
用户友好体验:设计简洁,提供全面文档、易开始指南和演示配置,直观的配置方式。
使用教程:
1. 安装 Data-Juicer:可以通过源代码或使用 pip 安装。
2. 准备数据集:确保数据集格式符合要求,如 jsonl、parquet、csv 等。
3. 配置数据处理流程:根据需求选择合适的操作符并配置参数。
4. 运行数据处理:使用 process_data.py 工具或 dj-process 命令行工具处理数据集。
5. 分析数据:使用 analyze_data.py 工具或 dj-analyze 命令行工具分析数据集。
6. 可视化数据:通过 app.py 工具在浏览器中可视化数据集。
7. 构建沙盒实验室:在沙盒中实验、迭代和优化数据配方。
8. 贡献和反馈:参与社区,贡献代码或提供反馈以改进 Data-Juicer。
浏览量:41
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
一站式数据处理系统,为大型语言模型提供高质量数据。
Data-Juicer 是一个一站式的多模态数据处理系统,旨在为大型语言模型(LLMs)提供更高质量、更丰富、更易消化的数据。它提供了一个系统化和可复用的数据处理库,支持数据与模型的协同开发,通过沙盒实验室实现快速迭代,并提供基于数据和模型的反馈循环、可视化和多维度自动评估等功能,帮助用户更好地理解和改进他们的数据和模型。Data-Juicer 正在积极更新和维护,定期增强和添加更多功能、数据配方和数据集。
构建大型语言模型支持的多智能体应用。
AgentScope是一个创新的多智能体平台,旨在赋能开发者使用大规模模型构建多智能体应用。它具有易于使用、高鲁棒性和基于Actor的分布式特性,支持自定义容错控制和重试机制,以增强应用稳定性。
通过GPT等大型语言模型与你的文档对话
IncarnaMind是一个开源项目,旨在通过大型语言模型(LLMs)如GPT、Claude和本地开源LLMs,实现与个人文档(PDF、TXT)的交互对话。该项目利用滑动窗口分块机制和集成检索器,提高查询效率,增强LLMs的准确性。它支持多文档对话问答,突破了单文档限制,并兼容多种文件格式和LLM模型。
AI原生数据应用开发框架
DB-GPT是一个开源的AI原生数据应用开发框架,利用AWEL(Agentic Workflow Expression Language)和代理(agent)技术,简化了大型模型应用与数据的结合。它通过多模型管理、Text2SQL效果优化、RAG框架优化、多代理框架协作等技术能力,使企业和开发者能够以更少的代码构建定制化应用。DB-GPT在数据3.0时代,基于模型和数据库,为构建企业级报告分析和业务洞察提供了基础数据智能技术。
用于微调Meta Llama模型的库和示例脚本集合
llama-recipes是Meta Llama模型的配套仓库,旨在提供一个可扩展的库,用于微调Meta Llama模型,并提供一些示例脚本和笔记本,以便快速开始使用模型在各种用例中,包括领域适应的微调和构建基于LLM的应用程序。
使用Kolmogorov-Arnold网络实现的预训练生成式变换器(GPTs)的语言模型
kan-gpt是一个基于PyTorch的Generative Pre-trained Transformers (GPTs) 实现,它利用Kolmogorov-Arnold Networks (KANs) 进行语言建模。该模型在文本生成任务中展现出了潜力,特别是在处理长距离依赖关系时。它的重要性在于为自然语言处理领域提供了一种新的模型架构,有助于提升语言模型的性能。
基于AI的Python网络爬虫库,自动化提取网页信息。
ScrapeGraphAI是一个使用LLM(大型语言模型)和直接图逻辑来为网站、文档和XML文件创建抓取管道的Python网络爬虫库。用户只需指定想要提取的信息,库就会自动完成这项工作。该库的主要优点在于简化了网络数据抓取的过程,提高了数据提取的效率和准确性。它适用于数据探索和研究目的,但不应被滥用。
自监督触觉表示,用于基于视觉的触觉传感。
Sparsh是一系列通过自监督算法(如MAE、DINO和JEPA)训练的通用触觉表示。它能够为DIGIT、Gelsight'17和Gelsight Mini生成有用的表示,并在TacBench提出的下游任务中大幅度超越端到端模型,同时能够为新下游任务的数据高效训练提供支持。Sparsh项目包含PyTorch实现、预训练模型和与Sparsh一起发布的数据集。
高效的大型语言模型(LLM)研究代码库
Meta Lingua 是一个轻量级、高效的大型语言模型(LLM)训练和推理库,专为研究而设计。它使用了易于修改的PyTorch组件,使得研究人员可以尝试新的架构、损失函数和数据集。该库旨在实现端到端的训练、推理和评估,并提供工具以更好地理解模型的速度和稳定性。尽管Meta Lingua目前仍在开发中,但已经提供了多个示例应用来展示如何使用这个代码库。
使用Gemini API进行图像物体检测的Streamlit应用
bonding_w_geimini是一个基于Streamlit框架开发的图像处理应用,它允许用户上传图片,通过Gemini API进行物体检测,并在图片上直接绘制出物体的边界框。这个应用利用了机器学习模型来识别和定位图片中的物体,对于图像分析、数据标注和自动化图像处理等领域具有重要意义。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
高效训练高质量文本到图像扩散模型
ml-mdm是一个Python包,用于高效训练高质量的文本到图像扩散模型。该模型利用Matryoshka扩散模型技术,能够在1024x1024像素的分辨率上训练单一像素空间模型,展现出强大的零样本泛化能力。
由实践者主导的LLMs公开课
Mastering LLMs 是一个由25多位行业资深人士主讲的免费课程,涵盖了评估、检索增强生成(RAG)、微调等主题。课程内容由信息检索、机器学习、推荐系统、MLOps和数据科学等领域的专家提供,旨在将这些领域的先前技术应用于LLMs,为用户提供有意义的优势。课程面向需要指导如何改进AI产品的技术IC(包括工程师和数据科学家)。
统一的代码库,用于微调大型多模态模型
lmms-finetune是一个统一的代码库,旨在简化大型多模态模型(LMMs)的微调过程。它提供了一个结构化的框架,允许用户轻松集成最新的LMMs并进行微调,支持全微调和lora等策略。代码库设计简单轻量,易于理解和修改,支持包括LLaVA-1.5、Phi-3-Vision、Qwen-VL-Chat、LLaVA-NeXT-Interleave和LLaVA-NeXT-Video等多种模型。
AI代理工具集,赋能复杂任务处理。
Composio是一个为AI代理提供高质量工具和集成的平台,它简化了代理的认证、准确性和可靠性问题,使得开发者能够通过一行代码集成多种工具和框架。它支持100多种工具,覆盖了GitHub、Notion、Linear等90多个平台,提供了包括软件操作、操作系统交互、浏览器功能、搜索、软件开发环境(SWE)以及即席代理数据(RAG)等多种功能。Composio还支持六种不同的认证协议,能够显著提高代理调用工具的准确性。此外,Composio可以作为后端服务嵌入到应用程序中,为所有用户和代理管理认证和集成,保持一致的体验。
低代码构建多Agent大模型应用的开发工具
LazyLLM是一个致力于简化人工智能应用构建流程的开发工具,它通过提供低代码的解决方案,使得开发者即使不了解大模型也能轻松组装包含多个Agent的AI应用。LazyLLM支持一键部署所有模块,跨平台兼容,自动进行网格搜索参数优化,以及高效的模型微调,从而提升应用效果。
一个开放平台,用于日常使用的语言代理。
OpenAgents是一个开放平台,旨在使用户和开发者能够在日常生活中使用和托管语言代理。该平台已经实现了三种代理:数据分析的Data Agent、集成200+日常工具的Plugins Agent和自动网页浏览的Web Agent。OpenAgents通过优化的Web UI使普通用户能够与代理功能进行交互,同时为开发者和研究人员提供在本地设置上的无缝部署体验,为创新语言代理的构建和现实世界评估提供了基础。
本地语音聊天机器人,保护隐私,无需联网。
june是一个结合了Ollama、Hugging Face Transformers和Coqui TTS Toolkit的本地语音聊天机器人。它提供了一种灵活、注重隐私的解决方案,可以在本地机器上进行语音辅助交互,确保没有数据被发送到外部服务器。产品的主要优点包括无需联网即可使用、保护用户隐私、支持多种交互模式等。
基于ChatTTS模型的文本到语音转换项目
ChatTTS-Forge是一个围绕TTS生成模型ChatTTS开发的项目,实现了API服务器和基于Gradio的WebUI,能够提供全面的API服务,支持生成1000字以上的长文本,保持一致性,并通过内置32种不同风格进行风格管理。
代码生成任务的新型模型,测试准确率高于GPT-4 Turbo。
AutoCoder是一个专为代码生成任务设计的新型模型,其在HumanEval基准数据集上的测试准确率超过了GPT-4 Turbo(2024年4月)和GPT-4o。与之前的开源模型相比,AutoCoder提供了一个新功能:它可以自动安装所需的包,并在用户希望执行代码时尝试运行代码,直到确定没有问题。
为真实世界机器人提供最先进的机器学习模型、数据集和工具。
LeRobot 是一个旨在降低进入机器人领域的门槛,让每个人都能贡献并从共享数据集和预训练模型中受益的开源项目。它包含了在真实世界中经过验证的最先进的方法,特别关注模仿学习和强化学习。LeRobot 提供了一组预训练模型、带有人类收集演示的数据集和模拟环境,以便用户无需组装机器人即可开始。未来几周内,计划增加对最实惠和最有能力的真实世界机器人的支持。
基于 LLM 大语言模型的知识库问答系统。
MaxKB 是一款基于 LLM 大语言模型的知识库问答系统,旨在成为企业的最强大脑。支持文档上传、自动爬取在线文档,智能问答交互体验好。支持快速嵌入到第三方业务系统。技术栈包括 Vue.js、Python/Django、Langchain、PostgreSQL/pgvector。
使用简单、原始的 C/CUDA 进行 LLM 训练
karpathy/llm.c 是一个使用简单的 C/CUDA 实现 LLM 训练的项目。它旨在提供一个干净、简单的参考实现,同时也包含了更优化的版本,可以接近 PyTorch 的性能,但代码和依赖大大减少。目前正在开发直接的 CUDA 实现、使用 SIMD 指令优化 CPU 版本以及支持更多现代架构如 Llama2、Gemma 等。
聊天与文件上传助手
ChatGPT Sidebar & GPT-4 Vision Image & Gemini是一个智能AI助手,可帮助您在浏览器的每个标签中使用ChatGPT-3.5和GPT-4,并轻松与PDF或任何其他文件进行聊天。它还具有文件上传功能,方便您分析长文档、提问,以及利用GPT 3.5和4的强大功能。您还可以使用GPT-4 Vision分析图表、图片等。您不再受限于GPT的截止日期,可以使用Web Access功能访问实时数据。
苹果芯片高效灵活机器学习
MLX是一种类似NumPy的数组框架,专为在苹果芯片上进行高效灵活的机器学习而设计,由苹果机器学习研究团队提供。Python API与NumPy紧密相似,但也有一些例外。MLX还具有完整的C++ API,紧密遵循Python API。MLX与NumPy的主要区别包括:可组合的函数转换、惰性计算和多设备支持。MLX的设计灵感来自PyTorch、Jax和ArrayFire等框架。与这些框架不同的是,MLX采用统一内存模型。MLX中的数组位于共享内存中,可以在任何受支持的设备类型(CPU、GPU等)上执行操作,而无需执行数据复制。
发现、分享和推广最好的OpenAI GPT
ProGPTs是一个专注于OpenAI GPT的平台,用户可以发现、分享和推广最好的GPT模型。平台提供了一个独家列表,展示了各种领域的顶尖GPT模型。用户可以提交自己的GPT模型,与超过7000名用户分享和推广。ProGPTs还提供了订阅功能,让用户可以及时了解到最新的GPT模型。无论你是开发者、研究者还是对GPT模型感兴趣的人,ProGPTs都是一个不可多得的资源。
嵌入AI的影子平台
Humanloop是一个用于构建和监控以大语言模型为基础的生产级应用的协作平台。它提供了一套完整的工具集,可以帮助开发者更快速地将AI从原型开发到生产环境,同时保证系统的可靠性。主要功能包括:提示工程,可以迭代和版本化提示,提高命中率;模型管理,支持各种模型并进行跟踪;内容评估,收集反馈并进行定量分析;以及合作平台,让非技术人员也可以参与到AI应用开发中。典型应用场景有构建聊天机器人、自动化客户支持以及生成营销内容等。Humanloop已经受到了成千上万开发者的青睐,被多家知名企业所使用。
Langroid是一个基于Python的轻量级LLM框架
Langroid是一个轻量级、可扩展和原则性的Python框架,可以轻松地构建基于LLM的应用程序。您可以设置代理,为它们配备可选组件(LLM、向量存储和方法),分配它们任务,并让他们通过交换消息协作解决问题。这个多代理范例的灵感来自Actor框架(但您不需要了解任何关于这个的知识!)。Langroid提供了一个全新的LLM应用程序开发方式,在简化开发人员体验方面进行了深思熟虑;它不使用Langchain。我们欢迎贡献--请参阅贡献文档以获取贡献想法。
© 2024 AIbase 备案号:闽ICP备08105208号-14