需求人群:
"目标受众为需要快速获取信息的用户,包括研究人员、新闻工作者、金融分析师、普通网民等。ChatGPT search 以其快速、直观的搜索体验,满足了用户对实时信息的需求,特别适合需要即时获取新闻、数据和分析的用户。"
使用场景示例:
用户查询最新的股市动态,ChatGPT search 提供实时股票报价和相关新闻链接。
记者在撰写报道时,通过ChatGPT search 快速获取背景信息和数据支持。
学生在研究课题时,利用ChatGPT search 找到最新的学术资料和研究报告。
产品特色:
- 快速获取实时答案:用户可以直接通过自然语言提问,ChatGPT search 提供快速回答。
- 链接到相关网页源:提供链接到新闻文章、博客帖子等,方便用户深入了解。
- 支持上下文理解:ChatGPT search 能够根据对话的上下文提供更准确的答案。
- 与新闻和数据提供商合作:提供最新的天气、股票、体育、新闻和Map信息。
- 强调信息来源的可信度:突出显示来自可信新闻源的信息,增加用户信任。
- 支持多种设备:可在桌面和移动应用上使用,覆盖更广泛的用户群体。
- 持续改进:计划在未来几个月内向所有免费用户推出,并不断改进搜索功能。
使用教程:
1. 访问 ChatGPT search 网站或打开相应的 APP。
2. 在搜索框中输入你的问题或需求,以自然语言的形式。
3. 查看 ChatGPT search 提供的答案和相关网页链接。
4. 点击链接深入了解详细信息,或根据上下文提出后续问题。
5. 如果需要特定领域的信息,可以指定关键词以缩小搜索范围。
6. 利用 ChatGPT search 的上下文理解能力,进行更深入的对话式搜索。
7. 体验与新闻和数据提供商合作带来的最新信息和视觉设计。
8. 根据需要,可以在桌面和移动设备上切换使用 ChatGPT search。
浏览量:114
最新流量情况
月访问量
7.01m
平均访问时长
00:02:01
每次访问页数
2.18
跳出率
59.77%
流量来源
直接访问
35.34%
自然搜索
46.92%
邮件
0.05%
外链引荐
17.37%
社交媒体
0.29%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
5.94%
英国
3.74%
印度
8.56%
日本
7.08%
美国
15.98%
通过自然语言搜索获取快速、及时的答案
ChatGPT search 是 OpenAI 推出的一款新型搜索工具,它通过自然语言处理技术,让用户能够以对话的形式获得快速、及时的答案,并提供相关网页链接。这项技术结合了最新的体育比分、新闻、股票报价等实时信息,为用户提供了一个全新的搜索体验。ChatGPT search 的推出,标志着搜索技术向更自然、更直观的方向发展,同时也为内容提供者带来了接触更广泛受众的机会。
自然语言处理模型
LLaMA Pro 是一种用于大规模自然语言处理的模型。通过使用 Transformer 模块的扩展,该模型可以在不遗忘旧知识的情况下,高效而有效地利用新语料库来提升模型的知识。LLaMA Pro 具有出色的性能,在通用任务、编程和数学方面都表现出色。它是基于 LLaMA2-7B 进行初始化的通用模型。LLaMA Pro 和其指导类模型(LLaMA Pro-Instruct)在各种基准测试中均取得了先进的性能,展示了在智能代理中进行推理和处理各种任务的巨大潜力。该模型为将自然语言和编程语言进行整合提供了宝贵的见解,为在各种环境中有效运作的先进语言代理的开发奠定了坚实的基础。
自然语言搜索和人脸识别工具
Hachikey是一个自然语言搜索和人脸识别工具,能够帮助用户快速搜索视频和图片。它可以通过文本查询搜索视频中的场景、物体和人物,并且可以在播放视频的同时进行搜索。用户可以本地索引视频和图片,只需要一次索引,即可开始搜索。此外,Hachikey还提供人脸识别功能,可以在整个图片集合中搜索自己或自己的亲人。该工具完全离线运行,保护用户的隐私。
先进的自然语言处理模型
MiscNinja是一种先进的自然语言处理模型,具有强大的文本生成和理解能力。其优势在于可以应用于多种领域,如智能对话系统、文本摘要、自动翻译等。定价根据使用情况而定,定位于为开发者和企业提供强大的自然语言处理解决方案。
增强自然语言技术用于NASA科学任务方向的信息检索和智能搜索
nasa-smd-ibm-st是一个基于Bi-encoder的句子转换模型,由nasa-smd-ibm-v0.1编码器模型进行了微调训练。它使用了2.71亿个训练样本以及260万个来自NASA科学任务方向(SMD)文档的领域特定样本进行训练。该模型旨在增强自然语言技术,如信息检索和智能搜索,以应用于SMD的自然语言处理任务。该模型可广泛用于信息检索、句子相似度搜索等NASA SMD相关的科学用例。
AI自然语言处理模型
Powerups AI是一款基于人工智能技术的自然语言处理模型,具有极高的语言理解和生成能力。该模型可以用于文本生成、语言翻译、对话生成等多个领域,可以帮助用户快速生成高质量的文本内容,提高工作效率。
强大的语言模型,支持多种自然语言处理任务。
GLM-4-32B 是一个高性能的生成语言模型,旨在处理多种自然语言任务。它通过深度学习技术训练而成,能够生成连贯的文本和回答复杂问题。该模型适用于学术研究、商业应用和开发者,价格合理,定位精准,是自然语言处理领域的领先产品。
快速构建自然语言处理应用
GradientJ是一个用于测试、部署和管理自然语言处理应用的平台。它基于大型语言模型如GPT-4,提供快速构建NLP应用的能力。用户可以使用GradientJ开发自定义的文本生成、问答系统、聊天机器人等NLP应用。GradientJ提供简单易用的接口和工具,让开发者能够快速上手并实现自己的用例。定价方案灵活,适合个人开发者和企业用户。
Python自然语言处理工具包
NLTK是一个领先的Python平台,用于处理人类语言数据。它提供了易于使用的接口,用于访问50多个语料库和词汇资源,如WordNet,并提供了一套文本处理库,用于分类、标记、解析和语义推理。它还提供了工业级NLP库的封装,并有一个活跃的讨论论坛。NLTK适用于语言学家、工程师、学生、教育者、研究人员和行业用户。NLTK可以免费使用,并且是一个开源的社区驱动项目。
利用最小熵耦合隐藏加密信息的自然语言隐写工具
Tomato 是一个隐写工具的概念验证,它利用由 ssokota 提供的最小熵耦合码。该工具通过将隐藏信息(密文)的概率分布与由大型语言模型(LLM)生成的封面文本的概率分布合并,实现信息隐藏。这种耦合最小化了联合熵,确保了隐写文本(封面文本与嵌入信息)保留了自然语言的统计特性,使隐藏信息难以被检测。解码过程中,LLM 通过提供上下文感知的解释来辅助,然后使用 MEC 反向解耦封面文本中的隐藏信息。这种方法确保隐藏信息可以无缝集成到文本中,并且可以安全、准确地在以后检索,风险最小。
Mistral是一个开源自然语言处理模型
Mistral是一个小型但强大的开源自然语言处理模型,可适用于多种使用场景。Mistral 7B模型性能优于Llama 2 13B模型,拥有自然的编程能力和8000个序列长度。Mistral采用Apache 2.0许可证发布,易于在任何云端和个人电脑GPU上部署使用。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
基于大规模数据的高质量信息抽取模型
雅意信息抽取大模型(YAYI-UIE)由中科闻歌算法团队研发,是一款在百万级人工构造的高质量信息抽取数据上进行指令微调的模型。它能够统一训练信息抽取任务,包括命名实体识别(NER)、关系抽取(RE)和事件抽取(EE),覆盖了通用、安全、金融、生物、医疗、商业等多个场景的结构化抽取。该模型的开源旨在促进中文预训练大模型开源社区的发展,并通过开源共建雅意大模型生态。
自然语言界面执行任务
Layerbrain是一款人类语言界面软件,可通过自然语言与任何软件、数据或API交互,执行任务。它可以帮助用户省去繁琐的命令行或编程操作,提高工作效率。Layerbrain还提供了强大的数据处理和分析功能,用户可以使用自然语言查询和分析数据。Layerbrain的定价灵活,用户可以根据自己的需求选择不同的套餐。
自然语言文本转表格工具
Textraction是一款自然语言文本转表格工具,能够将文本快速转换为表格,支持多语言,提供无限可能的实体提取,具有快速易用、自然语言描述等优势。定价根据使用量计费,适用于房地产、简历、客户支持、金融、产品列表、采购订单、教程等场景。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
一个用于自然语言处理的先进模型
Meta-spirit-lm是由Meta公司开发的一款先进的自然语言处理模型,它在Hugging Face平台上发布。这款模型在处理语言相关的任务时表现出色,如文本生成、翻译、问答等。它的重要性在于能够理解和生成自然语言,极大地推动了人工智能在语言理解领域的进步。该模型在开源社区中受到广泛关注,可以用于研究和商业用途,但需遵守FAIR Noncommercial Research License。
数据库查询的自然语言处理基准测试
TAG-Bench是一个用于评估和研究自然语言处理模型在回答数据库查询方面性能的基准测试。它基于BIRD Text2SQL基准测试构建,并通过增加对世界知识或超越数据库中明确信息的语义推理要求,提高了查询的复杂性。TAG-Bench旨在推动AI和数据库技术的融合,通过模拟真实的数据库查询场景,为研究者提供了一个挑战现有模型的平台。
AI智能知识库和自然语言搜索
Telescope是一款AI智能知识库和自然语言搜索工具,它能够将视频转录、文档摘要和网页提取,并通过自然语言搜索功能实现快速的知识发现。通过Telescope,您可以以比传统搜索快10倍的速度解锁知识。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
开源自然语言生成模型
OLMo是一个开源的自然语言生成模型,由Allen AI研究所开发,基于Transformer架构,可用于生成高质量的英文文本。它具有生成长度可达4096个token的长文本的能力。OLMo-7B是目前公开的参数量最大的开源英文语言模型之一,拥有69亿参数,在多个英文NLP任务上的表现优于同类模型。它可用于文本生成、任务导向的微调等多种自然语言处理任务。
利用向量搜索技术,实现基于描述搜索相关股票的工具。
概念股搜索器是一款基于自然语言处理和向量搜索技术的在线工具,它能够对用户输入的任意描述进行语义匹配,快速找到与之相关的中国A股上市公司股票。该产品的主要优点在于其创新的搜索方式,能够处理意象、概念、关键词等多种形式的输入,为用户提供一种全新的股票搜索体验。产品背景信息显示,它旨在帮助用户在投资决策时,能够快速获取相关信息,但请注意,搜索结果仅供参考,不构成投资建议。
人工智能驱动的自然语言处理工具,实现与机器的人类对话
TopAi Chat是一款人工智能驱动的自然语言处理工具,可以实现与机器的人类对话。它可以帮助用户更快速、更高效地生成相关、引人入胜的内容。TopAi Chat使用先进的AI技术,能够模拟人类的对话方式,让用户能够与机器进行自然流畅的交流。无论是聊天、问答、还是获取信息,TopAi Chat都能提供准确、快速、有趣的回答和服务。通过TopAi Chat,用户可以提升内容生成的效率,节省时间和精力。
boff.ai是一款AI助手,帮助用户提供智能的语音识别和自然语言处理服务。
boff.ai是一款基于人工智能的语音识别和自然语言处理技术的网站。它的主要优点是快速准确地识别用户的语音输入并能够理解其意图,从而提供相应的回答和建议。boff.ai的定位是提供智能的语音助手服务,帮助用户更高效地处理信息和完成任务。
自然语言计算的无限画布
tldraw computer是一个实验性项目,由tldraw团队开发,旨在提供一个无限的画布,用户可以在上面创建连接组件的工作流,以生成和转换数据。该产品使用多模态语言模型作为运行时来执行指令,代表了自然语言处理和工作流自动化的前沿技术。它的重要性在于能够简化复杂任务,提高工作效率,并促进创新。tldraw computer背景深厚,由tldraw SDK的开发者打造,该SDK用于无限画布应用,并且与流行的免费协作白板tldraw.com相关联。产品目前免费试用,主要面向需要数据生成和工作流自动化的专业人士和企业。
Linux命令自然语言翻译工具
heyCLI是一个将自然语言翻译为Linux命令的工具。它能帮助用户将普通语言转换为Linux命令,从而在终端中使用简单的英语完成复杂的操作。heyCLI可以帮助用户记住常用的Linux命令,提高工作效率。
自然语言与任何GraphQL API对话
ChatGQL是一个能够让用户使用自然语言与任何GraphQL API进行对话的工具。它使用人工智能技术,让用户能够以自然的方式与API进行交互。ChatGQL提供了简单易用的界面,用户可以直接在聊天窗口中输入问题或指令,然后ChatGQL会将其转化为GraphQL API可以理解的语言,并返回相应的结果。ChatGQL的优势在于它能够大大简化与GraphQL API的交互过程,使得开发者能够更加高效地使用API。
基于自然语言输入的图像修复算法
Inst-Inpaint是一种图像修复算法,可以根据自然语言输入估计要删除的对象并同时删除它。该产品提供了一个名为GQA-Inpaint的数据集,以及一种名为Inst-Inpaint的新型修复框架,可以根据文本提示从图像中删除对象。该产品提供了各种GAN和扩散基线,并在合成和真实图像数据集上运行实验。该产品提供了不同的评估指标,以衡量模型的质量和准确性,并显示出显著的定量和定性改进。
© 2025 AIbase 备案号:闽ICP备08105208号-14