浏览量:98
HunyuanVideo-I2V 是腾讯推出的基于 HunyuanVideo 的图像到视频生成框架。
HunyuanVideo-I2V 是腾讯开源的图像到视频生成模型,基于 HunyuanVideo 架构开发。该模型通过图像潜在拼接技术,将参考图像信息有效整合到视频生成过程中,支持高分辨率视频生成,并提供可定制的 LoRA 效果训练功能。该技术在视频创作领域具有重要意义,能够帮助创作者快速生成高质量的视频内容,提升创作效率。
UniTok是一个用于视觉生成和理解的统一视觉分词器。
UniTok是一种创新的视觉分词技术,旨在弥合视觉生成和理解之间的差距。它通过多码本量化技术,显著提升了离散分词器的表示能力,使其能够捕捉到更丰富的视觉细节和语义信息。这一技术突破了传统分词器在训练过程中的瓶颈,为视觉生成和理解任务提供了一种高效且统一的解决方案。UniTok在图像生成和理解任务中表现出色,例如在ImageNet上实现了显著的零样本准确率提升。该技术的主要优点包括高效性、灵活性以及对多模态任务的强大支持,为视觉生成和理解领域带来了新的可能性。
MatAnyone 是一个支持目标指定的稳定视频抠像框架,适用于复杂背景。
MatAnyone 是一种先进的视频抠像技术,专注于通过一致的记忆传播实现稳定的视频抠像。它通过区域自适应记忆融合模块,结合目标指定的分割图,能够在复杂背景中保持语义稳定性和细节完整性。该技术的重要性在于它能够为视频编辑、特效制作和内容创作提供高质量的抠像解决方案,尤其适用于需要精确抠像的场景。MatAnyone 的主要优点是其在核心区域的语义稳定性和边界细节的精细处理能力。它由南洋理工大学和商汤科技的研究团队开发,旨在解决传统抠像方法在复杂背景下的不足。
一种新颖的图像到视频采样技术,基于Hunyuan模型实现高质量视频生成。
leapfusion-hunyuan-image2video 是一种基于 Hunyuan 模型的图像到视频生成技术。它通过先进的深度学习算法,将静态图像转换为动态视频,为内容创作者提供了一种全新的创作方式。该技术的主要优点包括高效的内容生成、灵活的定制化能力以及对高质量视频输出的支持。它适用于需要快速生成视频内容的场景,如广告制作、视频特效等领域。该模型目前以开源形式发布,供开发者和研究人员免费使用,未来有望通过社区贡献进一步提升其性能。
MangaNinja 是一种基于参考的线稿上色方法,可实现精确匹配和细粒度交互控制。
MangaNinja 是一种参考引导的线稿上色方法,它通过独特的设计确保精确的人物细节转录,包括用于促进参考彩色图像和目标线稿之间对应学习的块洗牌模块,以及用于实现细粒度颜色匹配的点驱动控制方案。该模型在自收集的基准测试中表现出色,超越了当前解决方案的精确上色能力。此外,其交互式点控制在处理复杂情况(如极端姿势和阴影)、跨角色上色、多参考协调等方面展现出巨大潜力,这些是现有算法难以实现的。MangaNinja 由来自香港大学、香港科技大学、通义实验室和蚂蚁集团的研究人员共同开发,相关论文已发表在 arXiv 上,代码也已开源。
SVFR是一个用于视频人脸修复的统一框架。
SVFR(Stable Video Face Restoration)是一个用于广义视频人脸修复的统一框架。它整合了视频人脸修复(BFR)、着色和修复任务,通过利用Stable Video Diffusion(SVD)的生成和运动先验,并结合统一的人脸修复框架中的任务特定信息,有效结合了这些任务的互补优势,增强了时间连贯性并实现了卓越的修复质量。该框架引入了可学习的任务嵌入以增强任务识别,并采用新颖的统一潜在正则化(ULR)来鼓励不同子任务之间的共享特征表示学习。此外,还引入了面部先验学习和自引用细化作为辅助策略,以进一步提高修复质量和时间稳定性。SVFR在视频人脸修复领域取得了最先进的成果,并为广义视频人脸修复建立了新的范式。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
通过对比对齐进行 Pure 和 Lightning ID 定制
PuLID 是一个专注于人脸身份定制的深度学习模型,通过对比对齐技术实现高保真度的人脸身份编辑。该模型能够减少对原始模型行为的干扰,同时提供多种应用,如风格变化、IP融合、配饰修改等。
实时一步潜在扩散模型,可用图像条件控制生成
SDXS是一种新的扩散模型,通过模型微型化和减少采样步骤,大幅降低了模型延迟。它利用知识蒸馏来简化U-Net和图像解码器架构,并引入了一种创新的单步DM训练技术,使用特征匹配和分数蒸馆。SDXS-512和SDXS-1024模型可在单个GPU上分别实现约100 FPS和30 FPS的推理速度,比之前模型快30至60倍。此外,该训练方法在图像条件控制方面也有潜在应用,可实现高效的图像到图像翻译。
快速智能去背景
RMBG是一个基于人工智能的图像背景去除工具,可以在几秒内自动去掉图片中的背景。该工具使用前沿的深度学习算法,无需任何人工操作就可以快速高效地实现图片背景的消除。RMBG完全免费,用户可以随意上传图片进行处理,非常方便。
通过测试时间缩放显著提升视频生成质量。
Video-T1 是一个视频生成模型,通过测试时间缩放技术(TTS)显著提升生成视频的质量和一致性。该技术允许在推理过程中使用更多的计算资源,从而优化生成结果。相较于传统的视频生成方法,TTS 能够提供更高的生成质量和更丰富的内容表达,适用于数字创作领域。该产品的定位主要面向研究人员和开发者,价格信息未明确。
业界首个超大规模混合 Mamba 推理模型,强推理能力。
混元T1 是腾讯推出的超大规模推理模型,基于强化学习技术,通过大量后训练显著提升推理能力。它在长文处理和上下文捕捉上表现突出,同时优化了计算资源的消耗,具备高效的推理能力。适用于各类推理任务,尤其在数学、逻辑推理等领域表现优异。该产品以深度学习为基础,结合实际反馈不断优化,适合科研、教育等多个领域的应用。
一种无混叠的任意尺度超分辨率方法。
Thera 是一种先进的超分辨率技术,能够在不同尺度下生成高质量图像。其主要优点在于内置物理观察模型,有效避免了混叠现象。该技术由 ETH Zurich 的研究团队开发,适用于图像增强和计算机视觉领域,尤其在遥感和摄影测量中具有广泛应用。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
QwQ-Max-Preview 是 Qwen 系列的最新成果,基于 Qwen2.5-Max 构建,具备强大的推理和多领域应用能力。
QwQ-Max-Preview 是 Qwen 系列的最新成果,基于 Qwen2.5-Max 构建。它在数学、编程以及通用任务中展现了更强的能力,同时在与 Agent 相关的工作流中也有不错的表现。作为即将发布的 QwQ-Max 的预览版,这个版本还在持续优化中。其主要优点包括深度推理、数学、编程和 Agent 任务的强大能力。未来计划以 Apache 2.0 许可协议开源发布 QwQ-Max 以及 Qwen2.5-Max,旨在推动跨领域应用的创新。
Claude 3.7 Sonnet 是 Anthropic 推出的最新智能模型,支持快速响应和深度推理。
Claude 3.7 Sonnet 是 Anthropic 推出的最新混合推理模型,能够实现快速响应和深度推理的无缝切换。它在编程、前端开发等领域表现出色,并通过 API 提供对推理深度的精细控制。该模型不仅提升了代码生成和调试能力,还优化了对复杂任务的处理,适用于企业级应用。其定价与前代产品一致,输入每百万 token 收费 3 美元,输出每百万 token 收费 15 美元。
VisionAgent是一个用于生成代码以解决视觉任务的库,支持多种LLM提供商。
VisionAgent是一个强大的工具,它利用人工智能和大语言模型(LLM)来生成代码,帮助用户快速解决视觉任务。该工具的主要优点是能够自动将复杂的视觉任务转化为可执行的代码,极大地提高了开发效率。VisionAgent支持多种LLM提供商,用户可以根据自己的需求选择不同的模型。它适用于需要快速开发视觉应用的开发者和企业,能够帮助他们在短时间内实现功能强大的视觉解决方案。VisionAgent目前是免费的,旨在为用户提供高效、便捷的视觉任务处理能力。
Huginn-0125是一个35亿参数的潜变量循环深度模型,擅长推理和代码生成。
Huginn-0125是一个由马里兰大学帕克分校Tom Goldstein实验室开发的潜变量循环深度模型。该模型拥有35亿参数,经过8000亿个token的训练,在推理和代码生成方面表现出色。其核心特点是通过循环深度结构在测试时动态调整计算量,能够根据任务需求灵活增加或减少计算步骤,从而在保持性能的同时优化资源利用。该模型基于开源的Hugging Face平台发布,支持社区共享和协作,用户可以自由下载、使用和进一步开发。其开源性和灵活的架构使其成为研究和开发中的重要工具,尤其是在资源受限或需要高性能推理的场景中。
Lumina-Video 是一个用于视频生成的初步尝试项目,支持文本到视频的生成。
Lumina-Video 是 Alpha-VLLM 团队开发的一个视频生成模型,主要用于从文本生成高质量的视频内容。该模型基于深度学习技术,能够根据用户输入的文本提示生成对应的视频,具有高效性和灵活性。它在视频生成领域具有重要意义,为内容创作者提供了强大的工具,能够快速生成视频素材。目前该项目已开源,支持多种分辨率和帧率的视频生成,并提供了详细的安装和使用指南。
强大的视频替换与编辑软件,利用AI技术实现自然效果。
VisoMaster是一款专注于视频替换和编辑的桌面客户端软件。它利用先进的AI技术,能够在图像和视频中实现高质量的替换,效果自然逼真。该软件操作简单,支持多种输入输出格式,并通过GPU加速提高处理效率。VisoMaster的主要优点是易于使用、高效处理以及高度定制化,适合视频创作者、影视后期制作人员以及对视频编辑有需求的普通用户。软件目前免费提供给用户,旨在帮助用户快速生成高质量的视频内容。
VideoJAM 是一种用于增强视频生成模型运动连贯性的框架。
VideoJAM 是一种创新的视频生成框架,旨在通过联合外观 - 运动表示来提升视频生成模型的运动连贯性和视觉质量。该技术通过引入内指导机制(Inner-Guidance),利用模型自身预测的运动信号动态引导视频生成,从而在生成复杂运动类型时表现出色。VideoJAM 的主要优点是能够显著提高视频生成的连贯性,同时保持高质量的视觉效果,且无需对训练数据或模型架构进行大规模修改,即可应用于任何视频生成模型。该技术在视频生成领域具有重要的应用前景,尤其是在需要高度运动连贯性的场景中。
Janus-Pro-7B 是一个新型的自回归框架,统一多模态理解和生成。
Janus-Pro-7B 是一个强大的多模态模型,能够同时处理文本和图像数据。它通过分离视觉编码路径,解决了传统模型在理解和生成任务中的冲突,提高了模型的灵活性和性能。该模型基于 DeepSeek-LLM 架构,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并在多模态任务中表现出色。其主要优点包括高效性、灵活性和强大的多模态处理能力。该模型适用于需要多模态交互的场景,例如图像生成和文本理解。
Tarsier 是由字节跳动推出的用于生成高质量视频描述的大型视频语言模型。
Tarsier 是由字节跳动研究团队开发的一系列大规模视频语言模型,旨在生成高质量的视频描述,并具备强大的视频理解能力。该模型通过两阶段训练策略(多任务预训练和多粒度指令微调)显著提升了视频描述的精度和细节。其主要优点包括高精度的视频描述能力、对复杂视频内容的理解能力以及在多个视频理解基准测试中取得的 SOTA(State-of-the-Art)结果。Tarsier 的背景基于对现有视频语言模型在描述细节和准确性上的不足进行改进,通过大规模高质量数据训练和创新的训练方法,使其在视频描述领域达到了新的高度。该模型目前未明确定价,主要面向学术研究和商业应用,适合需要高质量视频内容理解和生成的场景。
OmniThink 是一种通过模拟人类思考过程来提升机器写作知识密度的框架。
OmniThink 是一种创新的机器写作框架,旨在通过模拟人类的迭代扩展和反思过程,提升生成文章的知识密度。它通过知识密度指标衡量内容的独特性和深度,并通过信息树和概念池的结构化方式组织知识,从而生成高质量的长文本。该技术的核心优势在于能够有效减少冗余信息,提升内容的深度和新颖性,适用于需要高质量长文本生成的场景。
Seaweed-APT是一种支持实时单步生成1280x720 24fps视频的模型。
Seaweed-APT是一种用于视频生成的模型,通过对抗性后训练技术,实现了大规模文本到视频的单步生成。该模型能够在短时间内生成高质量的视频,具有重要的技术意义和应用价值。其主要优点是速度快、生成效果好,适用于需要快速生成视频的场景。目前尚未明确具体的价格和市场定位。
强大的语言模型,拥有4560亿总参数,可处理长达400万token的上下文。
MiniMax-01是一个具有4560亿总参数的强大语言模型,其中每个token激活459亿参数。它采用混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE),通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、varlen环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万tokens,在推理时可处理长达400万tokens的上下文。在多个学术基准测试中,MiniMax-01展现了顶级模型的性能。
一种从2D图像学习3D人体生成的结构化潜在扩散模型。
StructLDM是一个结构化潜在扩散模型,用于从2D图像学习3D人体生成。它能够生成多样化的视角一致的人体,并支持不同级别的可控生成和编辑,如组合生成和局部服装编辑等。该模型在无需服装类型或掩码条件的情况下,实现了服装无关的生成和编辑。项目由南洋理工大学S-Lab的Tao Hu、Fangzhou Hong和Ziwei Liu提出,相关论文发表于ECCV 2024。
© 2025 AIbase 备案号:闽ICP备08105208号-14