高质量的数据集、工具和概念,用于大型语言模型的微调。
mlabonne/llm-datasets 是一个专注于大型语言模型(LLM)微调的高质量数据集和工具的集合。该产品为研究人员和开发者提供了一系列经过精心筛选和优化的数据集,帮助他们更好地训练和优化自己的语言模型。其主要优点在于数据集的多样性和高质量,能够覆盖多种使用场景,从而提高模型的泛化能力和准确性。此外,该产品还提供了一些工具和概念,帮助用户更好地理解和使用这些数据集。其背景信息包括由 mlabonne 创建和维护,旨在推动 LLM 领域的发展。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
大型多模态模型,集成表格数据
TableGPT2是一个大型多模态模型,专门针对表格数据进行预训练和微调,以解决实际应用中表格数据整合不足的问题。该模型在超过593.8K的表格和2.36M的高质量查询-表格-输出元组上进行了预训练和微调,规模前所未有。TableGPT2的关键创新之一是其新颖的表格编码器,专门设计用于捕获模式级别和单元格级别的信息,增强了模型处理模糊查询、缺失列名和不规则表格的能力。在23个基准测试指标上,TableGPT2在7B模型上平均性能提升了35.20%,在72B模型上提升了49.32%,同时保持了强大的通用语言和编码能力。
自动化的生成式AI评估平台
AutoArena是一个自动化的生成式AI评估平台,专注于评估大型语言模型(LLMs)、检索增强生成(RAG)系统和生成式AI应用。它通过自动化的头对头判断来提供可信的评估,帮助用户快速、准确、经济地找到系统的最佳版本。该平台支持使用来自不同供应商的判断模型,如OpenAI、Anthropic等,也可以使用本地运行的开源权重判断模型。AutoArena还提供了Elo评分和置信区间计算,帮助用户将多次头对头投票转化为排行榜排名。此外,AutoArena支持自定义判断模型的微调,以实现更准确、特定领域的评估,并可以集成到持续集成(CI)流程中,以自动化评估生成式AI系统。
开源的文本到图像生成模型
OpenFLUX.1是一个基于FLUX.1-schnell模型的微调版本,移除了蒸馏过程,使其可以进行微调,并且拥有开源、宽松的许可证Apache 2.0。该模型能够生成令人惊叹的图像,并且只需1-4步即可完成。它是一个尝试去除蒸馏过程,创建一个可以微调的开源许可模型。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
轻量级、多语言的先进文本生成模型
Phi-3.5-mini-instruct 是微软基于高质量数据构建的轻量级、多语言的先进文本生成模型。它专注于提供高质量的推理密集型数据,支持128K的token上下文长度,经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,确保精确的指令遵循和强大的安全措施。
一个用于增强LLMs检索增强生成任务的框架
RAGFoundry是一个库,旨在通过在特别创建的RAG增强数据集上微调模型,提高大型语言模型(LLMs)使用外部信息的能力。该库通过参数高效微调(PEFT)帮助用户轻松训练模型,并使用RAG特定指标衡量性能提升。它具有模块化设计,工作流程可通过配置文件自定义。
AI智能代理的微调平台
Finetune是一个面向开发者的AI智能代理微调平台,它通过创建反映客户特征的合成用户,让开发者的智能代理在模拟环境中进行测试和学习。平台提供会话报告和加权执行图,帮助开发者了解代理的性能并进行优化。此外,Finetune支持多种流行的AI模型和框架,使得集成和部署过程更加便捷。
由实践者主导的LLMs公开课
Mastering LLMs 是一个由25多位行业资深人士主讲的免费课程,涵盖了评估、检索增强生成(RAG)、微调等主题。课程内容由信息检索、机器学习、推荐系统、MLOps和数据科学等领域的专家提供,旨在将这些领域的先前技术应用于LLMs,为用户提供有意义的优势。课程面向需要指导如何改进AI产品的技术IC(包括工程师和数据科学家)。
统一的代码库,用于微调大型多模态模型
lmms-finetune是一个统一的代码库,旨在简化大型多模态模型(LMMs)的微调过程。它提供了一个结构化的框架,允许用户轻松集成最新的LMMs并进行微调,支持全微调和lora等策略。代码库设计简单轻量,易于理解和修改,支持包括LLaVA-1.5、Phi-3-Vision、Qwen-VL-Chat、LLaVA-NeXT-Interleave和LLaVA-NeXT-Video等多种模型。
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
高等数学问题的智能解答助手
AMchat是一个集成了数学知识和高等数学习题及其解答的大语言模型。它基于InternLM2-Math-7B模型,通过xtuner微调,专门设计用于解答高等数学问题。该项目在2024浦源大模型系列挑战赛(春季赛)中获得Top12和创新创意奖,体现了其在高等数学领域的专业能力和创新性。
心理健康大模型,支持心理健康辅导链路。
EmoLLM是一个心理健康大模型,由LLM指令微调而来,旨在全面理解和促进个体、群体乃至整个社会的心理健康状态。它包含认知因素、情感因素、行为因素、社会环境、生理健康、心理韧性、预防和干预措施、评估和诊断工具等多个关键组成部分。EmoLLM通过微调配置,能够在心理咨询任务上提供支持,帮助用户更好地理解和应对心理问题。
定制化大型语言模型的专业微调工具
Expert Specialized Fine-Tuning (ESFT) 是一种针对具有专家混合(MoE)架构的大型语言模型(LLMs)的高效定制化微调方法。它通过仅调整与任务相关的部分来优化模型性能,提高效率,同时减少资源和存储的使用。
开源视觉-语言-动作模型,推动机器人操作技术发展。
OpenVLA是一个具有7亿参数的开源视觉-语言-动作(VLA)模型,通过在Open X-Embodiment数据集上的970k机器人剧集进行预训练。该模型在通用机器人操作策略上设定了新的行业标准,支持开箱即用控制多个机器人,并且可以通过参数高效的微调快速适应新的机器人设置。OpenVLA的检查点和PyTorch训练流程完全开源,模型可以从HuggingFace下载并进行微调。
© 2024 AIbase 备案号:闽ICP备08105208号-14